
FEBRUARY 2004

webproxy

administrator’s guide

Legal Notices
The information contained in this document is subject to change without notice.

Warranty Disclaimer

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
INFORMATION, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Hewlett-Packard shall not be liable for errors contained herein or for direct, indirect, special,
incidental or consequential damages in connection with the furnishing or use of this material.

Restricted Rights Legend

Use, duplication, or disclosure by the United States Government is subject to restrictions as set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause at DFARS
252.227-7013. Rights for non-DOD U.S. Government Departments and Agencies are set forth in FAR
52.227-19(c)(1,2).

All rights reserved.

Copyright Notices

Copyright 2001-2004 Hewlett-Packard Development Company, L.P. This document
contains information which is protected by copyright. All Rights Reserved. Reproduction,
adaptation, or translation without prior written permission is prohibited, except as allowed
under copyright laws.

Trademark Notices

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

Intel Itanium™ Processor Family is a trademark of Intel Corporation in the U.S. and other countries
and is used under license.

iii

Sun, Sun Microsystems, Java™ and all Java-based trademarks and logos are registered trademarks of
Sun Microsystems, Incorporated in the United States and other countries.

IIS and NT Microsoft are registered U.S. trademarks of Microsoft Corporation.

Acknowledgements

This product includes software developed by the Apache Software Foundation. This
documentation is based on information from the Apache Software Foundation
(http://www.apache.org).

This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

More information of the HP-UX Apache-based Web Server Suite can be found at
http://www.hp.com/go/webserver.

Contents

Webproxy Administrator’s Guide v

1 • Webproxy Overview . 1

What is a Webproxy? . 1

Forward Proxy. 2

Reverse Proxy . 3

Webproxy Features. 4

Reasons for Deploying Webproxy . 6

How Webproxy Works. 7

HP-UX Security Overview. 8

Documentation . 8

Web Server Documentation . 9

Additional Documentation . 9

Technical Support. 10

Security Updates . 10

2 • Installing Webproxy . 11

Hardware Requirements . 11

Software Requirements . 12

Installing Webproxy . 13

Overview of Installed Files . 13

3 • Securing Internet Connections. 15

Web Server Creation and Removal in Webproxy 15

vi

Contents

Enabling Encryption on the Webproxy Server 17

Webproxy Server Certificates. 18

Enabling Encryption . 23

Setting Encryption Preferences. 23

Restarting the Webproxy Server. 24

SHM SSL Session Caching Support. 25

Configuring Webproxy to Authenticate to back-end Servers. . . 25

Maintaining Webproxy Server Certificate and Key Pair Files . . 25

4 • Configuring the Proxy Server . 29

Basic Configuration . 29

Routing Requests from the Web Server 30

Enabling Proxying . 31

Routing Requests to Back-End Servers 32

Hiding the Identity of the Back-End Server 32

Configuring a Webproxy Server Instance to Filter POST Method
Data . 33

Starting a Proxy Server Instance. 34

Advanced Configuration . 34

Routing Requests from Multiple Web Servers 36

Routing Specific Requests from the Web Server 36

Denying Specific Requests from All Internet Clients 37

Denying All Requests from Specific Internet Clients 38

Denying Specific Requests from Specific Internet Clients 41

Routing Specific Requests from Specific Internet Clients 42

Redirecting All Requests from Specific Internet Clients 45

Balancing Load in a Replicated Server Set . 47

DNS Round-Robin . 47

Proxy Round-Robin . 48

Maintaining Server Affinity in a Replicated Server Set 49

Restarting the Proxy Server . 51

Configuring Webproxy to Run in a Chrooted Environment 51

Contents

Webproxy Administrator’s Guide vii

5 • Configuration Reference. 53

Regular Expressions . 53

Configuration Files. 55

Configuration Directives . 56

mod_proxy . 56

mod_rewrite . 58

Other Directives . 64

6 • Troubleshooting . 69

Index . 79

viii

Contents

Webproxy Administrator’s Guide 1

Webproxy Overview
What is a Webproxy?

1 • Webproxy Overview

This chapter provides a brief overview of the features, architecture, and limitations
of Webproxy. Subsequent chapters show you how to install and configure the proxy
solution.

Webproxy is a secure reverse proxy solution that can enhance the security of any
application service delivered through a web portal. It mediates between clients on
the Internet and application servers on the intranet, providing a safe passage for
application data between authenticated users and authorized resources. Webproxy
is based on and bundled with the HP-UX Apache-based Web Server. Webproxy
functionality was previously available as the Virtualvault Web Proxy, but is now
incorporated into the HP-UX Apache-based Web Server. Webproxy has the same
functionality as Virtualvault Web Proxy, so previous Virtualvault Web Proxy users
will continue to have the same type and level of security. For more information
about Webproxy, see the HP-UX Apache-based Web Server bundled
documentation.

What is a Webproxy?

The term proxy originated in the legal community to indicate an entity empowered
to perform actions on behalf of another. In the Internet context, a proxy is a server
that acts on behalf of another. A proxy server is a system that resides between
clients and the servers to which they want access. When the proxy server receives a
request from a client, it forwards the request to a remote server, reads the server
response, and then relays the response back to the client.

The term reverse proxy is used in so many different ways that you can easily feel
lost. To help you find a clear path through the jungle of opinions, this section
explains what we mean by the terms proxy, forward proxy, and reverse proxy.

2 Chapter 1

Webproxy Overview
What is a Webproxy?

A proxy server is more than a relay. The proxy server is a convenient site for
recording user access information because all requests are channeled through this
system. Moreover, the proxy server is ideally positioned to filter incoming requests
or outgoing responses, providing some important security features.

Forward Proxy

A forward proxy server usually sits behind an enterprise’s firewall, mediating
access between clients on the intranet and servers on the Internet. When a client
requests a resource from the Internet, the proxy server fetches the resource from the
web server, caches it locally, and then forwards it to the client. If a client requests
the same resource again, the proxy server returns the local cached version as long
as the data has not expired. Caching eases network bottlenecks and improves the
apparent response time.

Forward Proxy

Fi
re

w
al

l

INTRANETINTERNET

Webproxy Administrator’s Guide 3

Webproxy Overview
What is a Webproxy?

What distinguishes a proxy server deployed as a forward proxy? As a forward
proxy, the proxy server is transparent to end-users. In general, the URL that users
request is the URL they see in their browser’s location display. Nevertheless,
administrators can configure a forward proxy to filter incoming requests and send
the browser to a different location.

For example, the administrator can configure the proxy server to deny access to
certain web sites that are prohibited by the company’s Internet usage policy. The
proxy server then examines requested URLs for specified keywords and, upon a
match, denies the request or serves an alternative page to the browser.

Reverse Proxy

A reverse proxy server mediates between clients on the Internet and servers on the
intranet. When a client requests a resource, the proxy fetches it from the back-end
server and relays it to the client.

Reverse Proxy

Fi
re

w
al

l

INTRANETINTERNET

4 Chapter 1

Webproxy Overview
Webproxy Features

What distinguishes a proxy server deployed as a reverse proxy? As a reverse proxy,
the proxy server makes the back-end servers transparent to end-users. Here, reverse
proxy refers to the deployment in which a proxy server stands-in for back-end
servers.

For example, if a user requests the URL http://www.company.com/foo.html, the
proxy intercepts the request and sends it to a back-end server, for example,
foo1.company.com. The user’s browser then displays the document location as
http://www.company.com/foo.html even though the document is really located at
http://foo1.company.com/index.html. Yet, a reverse proxy is more than the
opposite of a forward proxy.

Reverse proxy also refers to the operation in which the proxy alters the location
redirect header in server responses. For example, if the back-end server redirects
the browser, the reverse proxy operation alters the location redirect header so that
the browser requests http://www.company.com/new_index.html instead of
http://foo1.company.com/new_index.html.

Webproxy Features

Webproxy reduces the risk of malicious attacks against your application and
minimizes the damage that such attacks can cause. Combining the security of the
HP-UX Apache-based Web Server and the capabilities of a reverse proxy
deployment, Webproxy provides the following features.

• User Authentication
Webproxy ensures that users authenticate themselves before they gain access to
application resources.

• Content Filtering
Webproxy can restrict access to back-end resources based on any aspect of the
incoming request. Administrators can configure Webproxy to scan incoming
HTTP requests and deny access from specific clients to specific back-end

Webproxy Administrator’s Guide 5

Webproxy Overview
Webproxy Features

servers, files, or file types. Webproxy can also route incoming requests from
specific clients to alternative content instead of simply denying access.

• Reverse Proxy
Webproxy hides hostnames and IP addresses of back-end servers on the
intranet. Administrators can configure Webproxy so that browsers display the
URL relative to the hostname of Webproxy, instead of the back-end server that
actually processed the client’s request.

• Load Balancing Support
Webproxy can forward incoming HTTP requests to a group of servers with
identical content, known as a replicated server set, so that the workload is
balanced among all the servers in the replicated server set. If one back-end
server becomes temporarily unavailable, Webproxy can route requests to other
servers until the faulty server is repaired.

• Portal Support
Webproxy can forward incoming HTTP requests to multiple applications
running on disparate operating systems, such as IIS/Microsoft Platforms,
HP-UX Apache-based Web Server/HP-UX, SunOne on Solaris/Solaris, each
hosted on an independent, replicated server set. Webproxy maintains maximum
separation between application server sets, ensuring the privacy of individual
vendors even though they use a common infrastructure.

• Self-authentication of Webproxy to Back-End Servers
This feature allows Webproxy to authenticate itself to back-end servers on the
intranet if client authentication is required.

• POST Method Data Filtering
This feature enables Webproxy to filter POST method data sent to back-end
servers, based on the presence of a configured string pattern.

• Webproxy in a Chrooted Environment
This feature allows the Webproxy to be run in a chrooted environment to
enhance the security of the system. Webproxy server instances are chrooted by
default.

6 Chapter 1

Webproxy Overview
Reasons for Deploying Webproxy

Reasons for Deploying Webproxy

Webproxy can protect any web-based application that provides users on the Internet
with access to resources on the intranet. Without Webproxy, applications running
on the intranet are exposed to a variety of malicious attacks. An intruder may obtain
unauthorized data from the back-end server or compromise the security of all hosts
on the intranet. An attacker may tamper with the configuration of the proxy server,
making the back-end servers susceptible to damage.

With Webproxy, the risk of such attacks is far less. Webproxy provides a blanket of
security around the applications running on back-end servers, such as:

• Privacy
To clients on the Internet, Webproxy appears to be a single web server because
the identity of the various back-end servers is hidden from their view. As a
stand-in for back-end servers, Webproxy prevents direct exposure of internal
resources.

• Containment
In the unlikely event of a successful attack on the web server, perpetrators have
difficulty taking advantage of their break-in. They have little to gain. There are
no files they could modify that would damage the application. Nor can the
perpetrators gain access to the intranet because only Webproxy can
communicate with the intranet hosts.

• Logging
Administrators can log all application traffic at a single location because all
HTTP requests and responses are routed through Webproxy. Traffic log files
provide valuable insights into current and future network requirements and aid
intranet expansion strategies.

Webproxy Administrator’s Guide 7

Webproxy Overview
How Webproxy Works

How Webproxy Works

Webproxy runs on HP-UX, taking advantage of HP-UX’s security features to
provide a secure reverse proxy solution. When an Internet browser sends an HTTP
request, the web server receives it first. After the client is authenticated, the web
server sends the request through a secure interprocess communication (IPC)
channel to the proxy server. The proxy server forwards the request to a back-end
server on the intranet, and then returns the server response back to the browser.

Several HP-UX features and products work to make the Webproxy secure. HP-UX
Apache-based Web Server instances achieve file system isolation from each other
by using separate chroot compartments. Network traffic to and from the system can
be limited to permitted HTTP/SSH and other secured communications via
IPFilter/9000. Exploits that gain control of the system through buffer overflow
attacks can be thwarted with HP-UX’s built-in stack overflow protection. These
characteristic not only protect applications from outside attacks, but also mitigates
any damage the applications themselves could cause under the control of a
malicious attacker. The configuration file that determines the proxy server’s
behavior is safe from tampering because it resides in one chroot compartment while
the proxy server executes in another.

The web server listens for customer requests on the Internet interface only, whereas
the proxy server that communicates with the back-end resources listens on
localhost only, so the two cannot ordinarily communicate with each other on
pre-established communication paths.

While Webproxy can be made reasonably secure on the HP-UX platform,
Webproxy cannot protect an application against its own misconfiguration. The
application running on the back-end server may contain flaws in its security design
or implementation that remain unrecognized as application data passes through the
Internet-boundary system. Yet, the advantage of using Webproxy is that
applications need not be ported to, or execute on the Internet-boundary system
where they would be at greater risk of becoming compromised.

8 Chapter 1

Webproxy Overview
HP-UX Security Overview

Webproxy can be quickly integrated into any existing Internet application
deployment in order to provide adequate security. You can use Webproxy to not
only maintain the security of your current application, but also to gain familiarity
with HP-UX security features and solutions.

HP-UX Security Overview

HP-UX, when hardened for a secure web platform such as the HP-UX
Apache-based Web Server, allows you to conduct business safely on the World
Wide Web. Hardened HP-UX will securely connect internal enterprise applications
with clients on an external, untrusted network.

The following are a few of HP-UX’s most important security features.

• Containment of programs and data files within chroot compartment

• Limited access to the system through the use of IPFilter

• Integrity tools to detect and correct configuration changes

• Application-level logging to log events with security implications

• Out-of-the-box secure configuration

• Simplified administrative interface to reduce administrative errors

Documentation

This guide is intended to provide instructions on installing and configuring
Webproxy. If you are new to HP-UX security, refer to the extensive HP-UX
documentation to derive the maximum benefit from its security features. If you are
new to proxy servers, refer to the additional sources listed in this section.

Webproxy Administrator’s Guide 9

Webproxy Overview
Documentation

Web Server Documentation

Webproxy is integrated into the HP-UX Apache-based Web Server, which is based
of software developed by the Apache Software Foundation
(http://www.apache.org/). The HP-UX Apache-based Web Server comes bundled
with a complete set of documentation, however, the bundled documents do not
cover security enhancements specific to Webproxy. Those features are covered in
this document. The documentation for the HP-UX Apache-based Web Server can
be found at http://www.hp.com/go/webserver.

Additional Documentation

We recommend that you refer to the following sources for guidance on configuring
proxy servers for content filtering and load balancing.

• Apache HTTPD Server Documentation located at
http://httpd.apache.org/docs-2.0

• Apache module mod_rewrite URL Rewriting Engine, Apache HTTP Server v.
2.x located at http://httpd.apache.org/docs-2.0/misc/rewriteguide.html

• Miscellaneous mod_ssl documentation located at http://www.modssl.org/docs/

• A Users Guide to URL Rewriting with the Apache Web Server, Ralf S.
Engelschall located at http://www.engelschall.com/pw/apache/rewriteguide

• Apache module mod_proxy, Apache HTTP Server v. 2.x located at
http://httpd.apache.org/docs-2.0/mod/mod-proxy.html

• Load Balancing Your Web Site: Practical Approaches for Distributing
HTTP Traffic, Ralf S. Engelschall located at
http://www.webtechniques.com/archives/1998/05/engelschall

To learn more about regular expressions (used for configuring URL Rewriting), we
recommend the following:

The regex(3) manual page.

10 Chapter 1

Webproxy Overview
Technical Support

Mastering Regular Expressions, by Jeffrey E. F. Friedl, O’Reilly & Associates,
1997.

Technical Support

Security Updates

Since Webproxy is designed to protect your Internet application from malicious
attacks, it is important that you remain current with the security issues related to
your system. To that end, Hewlett-Packard provides access to the HP Security
Bulletin service free of charge. Please see the following Web Server support page
for information on subscribing to the electronic HP Security Bulletin,
http://www.hp.com/products1/unix/webservers/apache/support/index.html.
Updates for all security vulnerabilities found in the HP-UX Apache-based Web
Server product (including Webproxy), are promptly announced in the HP Security
Bulletin. At the time of announcement, a secure HP-UX Apache-based Web Server
replacement version will be available for download on HP Software Depot,
http://software.hp.com.

Webproxy Administrator’s Guide 11

Installing Webproxy
Hardware Requirements

2 • Installing Webproxy

This chapter shows you how to install Webproxy.

Hardware Requirements

Minimum hardware requirements for running Webproxy are based on the needs of
the HP-UX Apache-based Web Server with the addition of the following:

• Special needs of any application software

• Two supported network interface controllers per system

12 Chapter 2

Installing Webproxy
Software Requirements

Software Requirements

Webproxy is part of HP-UX Apache-based Web Server B2.0.48.00 and later which
can be installed on HP-UX 11.0 or 11i for PA-RISC and Itanium systems. The
HP-UX Web Server Suite contains command-line tools and utilities to support
Webproxy. Tools are available to create SSL keys, generate certificate requests, and
add/remove/change private key passwords. For more information about these tools
and utilities, please refer to the HP-UX Web Server Suite’s bundled documentation.

Webproxy Administrator’s Guide 13

Installing Webproxy
Installing Webproxy

Installing Webproxy

Webproxy is installed when the HP-UX Apache-based Web Server product is
installed as it is part of the product. Visit HP Software Depot at
http://software.hp.com for download and installation of the HP-UX Apache-based
Web Server.

Overview of Installed Files

Webproxy, part of the HP-UX Apache-based Web Server product, installs as the
"webproxy" subdirectory in the default HP-UX Apache-based Web Server
directory. Below the webproxy subdirectory are several webproxy-related
subdirectories.

• /opt/hpws/apache - This HP-UX Apache-based standard directory contains a
typical Apache installation. Instead of directly executing the Apache in a single
directory, Webproxy uses files in this directory as the base from which the
created server instance finds its binaries, libraries, tools and documentation.

Note: The default directory for 32-bit HP-UX Apache-based Web Servers on IPF
systems is /opt/hpws/apache32.

• /opt/hpws/apache/webproxy/bin - This subdirectory contains tools specific to
the Webproxy installation. These tools are used to create execution and runtime
environments for individual Web server instances. These tools include:

- mkchroot - A tool to generate a new chroot compartment environment.

- rmchroot - A tool to remove a chroot compartment environment.

- wp-create - A tool to create a new server instance.

- wp-remove - A tool to remove a web server instance.

- wp-modify - A tool to modify an existing server instance.

14 Chapter 2

Installing Webproxy
Overview of Installed Files

- web_proxy_config - A convenience tool for establishing rudimentary proxing
between two servers for the purpose of connecting internet browsers to
intranet hosts.

• /opt/hpws/apache/webproxy/conf - This subdirectory contains Webproxy
configuration templates for the server(s). Each server instance, along with
specific configuration, is contained in a separate subdirectory.

• /opt/hpws/apache/webproxy/run - This subdirectory is used by Webproxy
server instances to create ssl session cache and other runtime files.

• /opt/hpws/apache/webproxy/servers - This subdirectory contains a
subdirectory for each Webproxy server instance. The server-specific directories
instance contain their own bin, conf, logs subdirectories which contain
server-specific start scripts, configuration, log files and encryption certificates.
The parameters make up the server instance’s runtime configuration.

Webproxy Administrator’s Guide 15

Securing Internet Connections
Web Server Creation and Removal in Webproxy

3 • Securing Internet Connections

When an Internet browser sends an HTTP request to your enterprise server, the web
server running in the internet chroot compartment receives the request first. As the
first line of defense against malicious attacks, the internet web server plays an
important role in securing Internet connections. The site administrator can
configure the web server to authenticate users and enable encrypted communication
between the server and the clients.

Internet commerce may require both encryption and authentication services
between Internet clients and webserver hosts, and encryption is supported for
Webproxy servers. As a site administrator, you can configure Webproxy to support
the highest level of encryption allowed by law. The following sections show you
how to enable encryption on the Webproxy server.

You can have as many web servers as system resources will support on the HP-UX
system, but you must have at least one internet web server and one intranet web
server created to configure Webproxy. If you do not already have a web server
created, refer to the following section for instructions for creating one.

Web Server Creation and Removal in Webproxy

This section provides detailed instructions for creating and deleting Webproxy
servers. Two tools are provided for Webproxy server creation and removal:

wp_create - This program generates a set of configuration files and runtime
directories in which a Webproxy server instance may execute. The command takes
seven arguments.

Usage:

16 Chapter 3

Securing Internet Connections
Web Server Creation and Removal in Webproxy

wp_create <serverid> <servername> <http_port> <ssl_port> <user>
<group> <network/chroot>

Example:

wp_create server1 server1 80 443 owww other internet

• <serverid> identifies the name of the file system instance of the server. The
<serverid> string argument is appended to
/opt/hpws/apache/webproxy/servers/wp- to form the directory name of the
location where the server-specific files are to be maintained,
/opt/hpws/apache/webproxy/servers/wp-<serverid>.

• <servername> is a string that is used to modify the prospective server's name.
<servername> is edited into the httpd.conf's ServerName directive, and
becomes the base name that the server will assume when started.

• <http_port> is the default port number on which the server will listen. The
<http_port> string argument will be edited into the prospective server's Listen
directive.

• <ssl_port> is the default secure port on which the server will listen. The
<ssl_port> string argument will be edited into the prospective server's Listen
directive and VirtualHost declaration.

• <user> is a system account/username under which the server will execute. The
<user> string argument will be edited into the prospective server's User
directive.

• <group> is a system group under which the server will execute. The <group>
string argument will be edited into the prospective server's Group directive.

• <network> indicates the Chroot in which the server will execute. The
<network> string argument will be edited into the prospective server's Chroot
directive. The reason for referring to this as <network> is the loose association
between the Chroot compartment and the network that the server listens to.
While there is no enforcement that a server specified as either internet or
intranet actually listen to the internet or propagate requests to the intranet, if a
system administrator or integrator follows the default conventions for server
creation and configuration, then servers created using these defaults will operate
as one might intuitively suspect they would. It is simply important to remember
that the <network> argument is substituted into the Chroot directive, and that

Webproxy Administrator’s Guide 17

Securing Internet Connections
Enabling Encryption on the Webproxy Server

this specified chroot compartment must exist and be populated (see the section
on Chrooting the server) in order for the server to correctly chroot and execute.

wp_remove - This program removes the server instance directory at
/opt/hpws/apache/webproxy/servers/wp-<serverid>, and the cloned server
module that might exist in the Webmin GUI interface.

Usage:

wp_remove <serverid> <servername>

Example:

wp_remove server1 server1

Enabling Encryption on the Webproxy Server

This section provides detailed instructions for requesting and installing server
certificates, enabling encryption on the Webproxy server, and maintaining server
certificate and key pair files used by the Webproxy server when encryption is
enabled. The key elements to enabling encrypted communication between Internet
clients and the Webproxy server are summarized as follows:

• Generating and Submitting a Certificate Request - A certificate request consists
of your private key, your distinguished name (because it must be distinguishable
from everyone else’s), and some indisputable proof of your identity. For
example, a business license. When you submit a certificate request to a CA, the
CA will verify your authenticity and issue you a certificate. If you choose to
request a Global Server ID, you must submit your request to Verisign Inc.,
currently the only CA that provides Global Server IDs.

• Installing the Certificate on Your Webproxy Server - When you install the
server certificate on your Webproxy server, it allows the server to encrypt and
decrypt data transmissions. If you requested a Global Server ID from Verisign

18 Chapter 3

Securing Internet Connections
Enabling Encryption on the Webproxy Server

Inc., you will receive two certificates upon approval. You must install both
certificates.

• Enabling encryption on the Webproxy server.

• Setting the Webproxy server encryption preferences.

• Starting the Webproxy server to apply encryption settings.

• Maintaining Certificate and Key Pair Files - The public and private keys, the
server certificate, and the cryptographic modules used by the Webproxy server
are stored in individual files on the secure Webproxy server. The browser and
server use the encryption keys to agree upon a session key securely. The session
key is then used to encrypt and decrypt traffic between the two entities.

Webproxy Server Certificates

A server certificate is a digital document from the certificate authority (CA) who is
a trusted individual or organization that confirms the server’s authenticity. In effect,
the CA certifies your identity and issues you a certificate stating that the server’s
public key is unique and can be used to authenticate the server when it
communicates with browsers.

Different CAs may use different names for the same document. In addition, some
CAs may offer special server certificates for which the eligibility requirements are
more stringent. The following procedures, however, apply to all cases unless
otherwise noted.

In addition to maintaining authenticity, the server certificate also determines the
strength of the encryption used in connections with browsers. The length of the key
used to encrypt a message is a good indication of the amount of effort needed to
decrypt that message.

Configuring a Webproxy server certificate involves two steps:

1. Requesting the server certificate for the Webproxy server

2. Installing the server certificate on the Webproxy server

The following sections provide step-by-step instructions for these procedures.

Webproxy Administrator’s Guide 19

Securing Internet Connections
Enabling Encryption on the Webproxy Server

Generating Keys and Server Certificate

Tools to generate keys and certificates can be found in the HP-UX Apache Web
Server Suite. This is available as a free download from HP Software Depot at
http://software.hp.com. You may either use the HP-UX Web Server Suite
mkcert.sh utility (which has built-in usage and help documentation), the openssl
binary bundled with the suite, or the Webmin GUI to generate keys and certificates.
To create a RSA private key for your Apache server (Triple-DES encrypted and
PEM formatted):

cd /opt/hpws/apache
bin/openssl genrsa -des3 -rand <filename> -out \ webproxy/serv-
ers/serverid/conf/ssl.key/server.key 1024

<filename> is a large file or files containing random data used to seed the random
number generator, or an EGD (Entropy Gathering Daemon) socket. Multiple files
can be specified separated by a ":",(i.e. file1:file2:...:file5).

Backup this server.key file and remember the passphrase you had to enter at a
secure location. You can see the details of this RSA private key via the command:

bin/openssl rsa -noout -text -in \
webproxy/servers/serverid/conf/ssl.key/server.key

You can create a decrypted PEM version of this RSA private key using:

bin/openssl rsa -in \
webproxy/servers/serverid/conf/ssl.key/server.key -out \
webproxy/servers/serverid/conf/ssl.key/server.key.unsecure

Create a Certificate Signing Request (CSR) with the server RSA private key
(output will be PEM formatted). During this step you must answer a series of
questions in order to build your distinquished name. It is very important that you
answer all questions accurately.

bin/openssl req -new -key \
webproxy/servers/serverid/conf/ssl.key/server.key -out \
webproxy/servers/serverid/conf/ssl.csr/server.csr

Answer the following questions as appropriate:

• country

20 Chapter 3

Securing Internet Connections
Enabling Encryption on the Webproxy Server

• state

• locality

• organization

• organizational unit

• common name (enter the domain name or web server alias)

• email address (enter your email address)

• When prompted, enter a challenge password

• Optional company name

Make sure you enter the FQDN ("Fully Qualified Domain Name") of the server
when OpenSSL prompts you for the "CommonName", i.e. when you generate a
CSR for a website which will be later accessed via https://www.foo.dom/, enter
"www.foo.dom". You can see the details of this CSR via the command:

bin/openssl req -noout -text -in \
webproxy/servers/serverid/conf/ssl.csr/server.csr

Add "NEW" to server.csr so that:

-----BEGIN CERTIFICATE REQUEST-----
-----END CERTIFICATE REQUEST-----

becomes:

-----BEGIN NEW CERTIFICATE REQUEST-----
-----END NEW CERTIFICATE REQUEST-----

Copy the csr file, created above, and go to a trusted CA. They will generate your
CA-signed certificate.

Note:

• If you are requesting a Global Server ID from VeriSign Inc., you must
copy-and-paste the certificate request into the enrollment form at VeriSign's
web site.

• The approval of your certificate request may take a significant period of time,
even weeks, because it involves a separate authority and requires positive proof
of identity.

Webproxy Administrator’s Guide 21

Securing Internet Connections
Enabling Encryption on the Webproxy Server

Installing a Server Certificate

When you receive the signed server certificate from the CA, you need to install the
certificate and the private key into the Webproxy server file system hierarchy. The
certificate is encrypted with your public key and can only be decrypted with your
Webproxy server’s private key. The server decrypts it using the private key when
the server is started.

Use your browser’s Edit menu to copy-and-paste the certificate and install it on the
server, since incoming email is disabled on the typical HP-UX Webproxy system.
Alternatively, the certificate can be installed from a file, provided the certificate file
has been transferred to the HP-UX Webproxy from a floppy disk, tape, or via ftp.

Note: You should be logged on as root to access the appropriate directories for
installing the certificate.

To install the server certificate and private key on the Webproxy server, follow
these steps.

1. On the server that is running Webproxy, go to the
/opt/hpws/apache/webproxy/servers/ws-<serverid>/conf

2. Move the private key file from to the Webproxy server instance’s
/opt/hpws/apache/webproxy/servers/ws-<serverid>/conf/ssl.key/server.key
file.

3. When you receive your certificate from the CA, create a file named server.crt
in theWebproxy server’s
/opt/hpws/apache/webproxy/servers/ws-<serverid>/conf/ssl.crt directory and
put the new certificate into the server.crt file. To do this, use your browser’s
Edit menu to copy and paste the new certificate into the server.crt file, or ftp the
new certificate onto the HP-UX Webproxy system from an unsecure system.
Note:

- If there is already a certificate file in the
/opt/hpws/apache/webproxy/servers/ws-<serverid>/conf/ssl.crt directory,
you must rename it or it will be overwritten. If you use a different filename
other than server.crt, you must change the filename specified in the server’s
ssl.conf file so that they match.

- Key and certificate files should be readable (but not writable) by the user

22 Chapter 3

Securing Internet Connections
Enabling Encryption on the Webproxy Server

account specified by the server’s configuration file "User" directive. This is
often either iwww (intranet) or owww (internet).

4. Check the server’s
/opt/hpws/apache/webproxy/servers/wp-<serverid>/conf/ssl.conf file to
ensure the pathnames for the key and certificate are correct. The ssl.conf file
directives should be similar to the following:

SSLCertificateFile
/opt/hpws/apache/webproxy/servers/wp_<serverid>/conf/ssl.cr
t/server.crt
SSLCertificateKeyFile
/opt/hpws/apache/webproxy/servers/wp_<serverid>/conf/ssl.ke
y/server.key

Note: If you are installing a Global Server ID, you must also install the
Intermediate CA Certificate that is provided with it.

After you install the certificate on the server, you can activate encryption on the
Webproxy server as described in the following section.

Webproxy Administrator’s Guide 23

Securing Internet Connections
Enabling Encryption on the Webproxy Server

Enabling Encryption

SSL gives Webproxy the ability to encrypt SSL traffic from the outside web servers
to the inside back-end applications servers.

Additionally, Webproxy now supports rewriting to inside and back-end web servers
with HTTPS to establish an SSL connection between the back-end web servers and
Webproxy.

Enabling encryption on the Webproxy server is optional. You may choose to leave
it turned off, as is the default. You can enable and disable it by modifying the
Webproxy server’s ssl.conf file. This file is located in the
/opt/hpws/apache/webproxy/servers/wp-<serverid>/conf directory.

Note: You must be logged on as root to access the appropriate directories for
turning encryption on or off.

To turn encryption on for the Webproxy server, change the SSLEngine directive
in the Webproxy server’s ssl.conf file from off (default) to on. For example:

SSLEngine on

To turn encryption off for the Webproxy server, change the SSLEngine directive
in the Webproxy server’s ssl.conf file from on to off.

Setting Encryption Preferences

When a browser initiates a connection with the Webproxy server, the server
indicates to the browser a number of ciphers it can use to encrypt information. The
browser, in turn, will choose one of the cipher options indicated by the server. In
any two-way encryption process, both parties must use the same ciphers. Since
there are a number of ciphers available, your choice of cipher can be guided by the
popularity of the cipher, but it should be reasoned on the basis of the key size.

If you installed a Global Server ID on the Webproxy server, then you must also
consider a special case in choosing ciphers. The “step up” mechanism involved in

24 Chapter 3

Securing Internet Connections
Enabling Encryption on the Webproxy Server

the 128-bit encryption supported by the Global Server ID requires that the browser
and server first handshake over a 40-bit cipher before stepping up to 128-bits. If
you do not select any of the 40-bit ciphers, the “step up” mechanism will fail, even
if you select all the 128-bit ciphers available.

To set encryption preferences for SSL, refer to the online documentation for the
mod_ssl module for the SSLCipher Suite directive located at
httpd.apache.org/docs-2.0.

When you have finished configuring your encryption preferences for a server, you
must restart the Webproxy server instance for your changes to take effect.

Restarting the Webproxy Server

For your encryption configuration changes to take effect, you must restart the
Webproxy server. To restart the Webproxy server, execute the following
commands.

/opt/hpws/apache/webproxy/servers/wp-<serverid>/bin/apachectl \
stopall
/opt/hpws/apache/webproxy/servers/wp-<serverid>/bin/apachectl \
startssl

When prompted for the passphrase, type the password you created when you
requested the server certificate. If you fail to enter the correct password on the first
attempt or within 60 seconds, repeat the step above.

Note: Typically, apachectl is executed with the "stop" argument to stop the server.
When an Apache server is confined in a chroot compartment, it cannot access the
pid file that it created at startup
(/opt/hpws/apache/webproxy/servers/wp_<serverid>/run/httpd.pid), and so it
cannot be stopped by the normal stop process. Webproxy has added the "stopall"
target to kill the httpd watchdog process and its children.

Webproxy Administrator’s Guide 25

Securing Internet Connections
Enabling Encryption on the Webproxy Server

SHM SSL Session Caching Support

SHM SSL is supported with this Webproxy release. The SSLSessionCache
directive configures the storage type of the global interprocess SSL Session Cache,
which speeds up parallel request processing. The SHM storage type makes use of a
circular buffer method inside a shared memory segment in RAM to synchronize the
local OpenSSL memory caches of the server processes.

The SSL session cache directives are in the “Inter-Process Session Cache” section
of the /opt/hpws/apache/webproxy/servers/wp-<serverid>/conf/ssl.conf file.
Comment out one SSLSessionCache statement to select the caching
mechanism.

Refer to httpd.apache.org/docs-2.0 for more information on the
SSLSessionCache directive.

Configuring Webproxy to Authenticate to back-end Servers

To configure the Webproxy to authenticate itself to a back-end server, the following
changes should be made to the Webproxy configuration file,
/opt/hpws/apache/webproxy/servers/wp-<serverid>/conf/ssl.conf. Uncomment
the following line by removing the leading #:

#SSLVVProxyClientCertificate On

Maintaining Webproxy Server Certificate and Key Pair Files

When encryption is enabled on the Webproxy server, a pair of digital keys are used
to cryptographically protect communication between the Webproxy system intranet
web server and internal networks.

The security of the Webproxy server’s key pair must not be compromised. The
private key is encrypted with a password known only by the Host administrator.

26 Chapter 3

Securing Internet Connections
Enabling Encryption on the Webproxy Server

On server startup, the Host administrator provides the private key password in
order to utilize the private key.

The public key is distributed to clients, which use the key to encrypt requests and
replies sent to the intranet administration server. The public key is also used by the
intranet Webproxy server. The server certificate is used to identify the server to
both the internet Webproxy servers, as well as, the inside/intranet network servers.

The public key is not kept secret but it must be protected from tampering. The
certificate authority, a trusted individual or organization, must certify the public key
and create the certificate. The Host Administrator is also responsible for backing up
the key pair so that they can be restored in case the files on disk are corrupted or
destroyed.

After requesting and receiving the server certificate from your chosen certificate
authority, the site administrator must install it on the appropriate Webproxy server
instance, turn on encryption, and restart the server(s) to apply the security settings.

The site administrator has two ongoing maintenance responsibilities.

• Changing or removing key pair passwords

• Backing up server certificate and key pair files so they can be recovered

The following sections provide step-by-step instructions for these procedures.

Adding or Restoring a Key Pair Password

To put back the passphrase that has been removed from a private key or to add a
passphrase for the first time, from

/opt/hpws/apache/webproxy/servers/wp_<serverid>/conf/ssl.key/server.key, as
root enter the following command:

/opt/hpws/apache/ssl/bin/openssl rsa -des3 -in server1.key -out \
server2.key

If necessary, update
/opt/hpws/apache/webproxy/servers/wp_<serverid>/conf/ssl.conf :

Webproxy Administrator’s Guide 27

Securing Internet Connections
Enabling Encryption on the Webproxy Server

Replace:

SSLCertificateKeyFile /opt/hpws/apache/webproxy/servers/wp_<serv-
erid>/conf/ssl.key/server1.key

With:

SSLCertificateKeyFile /opt/hpws/apache/webproxy/servers/wp_<serv-
erid>/conf/ssl.key/server2.key

Removing a Key Pair Password

To remove the passphrase in the private key that's stored within
/opt/hpws/apache/webproxy/servers/wp_<serverid>/conf/ssl.key/server.key, as
root enter the following command:

/opt/hpws/apache/ssl/bin/openssl rsa -in server.key -out \
server1.key

In /opt/hpws/apache/webproxy/servers/wp_<serverid>/conf/ssl.conf :

Replace:

SSLCertificateKeyFile /opt/hpws/apache/webproxy/servers/wp_<serv-
erid>/conf/ssl.key/server.key

With:

SSLCertificateKeyFile /opt/hpws/apache/webproxy/servers/wp_<serv-
erid>/conf/ssl.key/server1.key

Backing Up Server Certificate and Key Pair Files

The Webproxy server certificate and key pair files should always be backed up to a
removable medium in case an error corrupts or deletes the files on the system. If
these files are corrupted or destroyed, you can restore them using the backup copy.
Without the backup copy, you would have to generate a new certificate request,
which takes its toll in time and money. You must also ensure that the backup is
physically secure. Never leave backups unprotected.

28 Chapter 3

Securing Internet Connections
Enabling Encryption on the Webproxy Server

The key pair files for each server certificate are installed in the
/opt/hpws/apache/webproxy/servers/wp-<serverid>/conf/ssl.key and ssl.crt
directories by default.

Webproxy Administrator’s Guide 29

Configuring the Proxy Server
Basic Configuration

4 • Configuring the Proxy Server

When an internet Webproxy server forwards a client’s request via trusted IPC to the
intranet Webproxy server, the proxy server directs it over the intranet to a specific
back-end server. When that back-end server responds, the intranet proxy server
forwards the response back to the internet web server, which then sends it over the
Internet to the client. Simple as this sounds, the proxy servers is far more than a
mere relay. In fact, Webproxy is a powerful agent that can be configured for a wide
range of functions. With such flexibility, however, comes some complexity.

The following sections are intended to help you make the Webproxy operational as
quickly as possible. To customize the proxy server further, build on the examples
provided here and the examples shown in the sources listed in the "Additional
Documentation" section.

HTTP proxying on Webproxy requires a pair of proxy server instances. One proxy
listens to the internet network interface for client connections, and forwards
requests to a localhost port. The second, intranet proxy instance listens on the
localhost port and forwards the request to a back-end application over the intranet
network interface.

Basic Configuration

To get the Webproxy up and running, the following steps must be performed.

1. Route requests from the internet Webproxy server to the intranet Webproxy
server.

2. Enable proxying.

3. Route requests from the intranet proxy server to back-end servers.

4. Hide the identity of back-end servers.

30 Chapter 4

Configuring the Proxy Server
Basic Configuration

5. Start the proxy servers.

To perform these tasks, follow the procedures provided in this chapter, paying
particular attention to the tips or warnings at the end of each section. If you are
unfamiliar with the proxy server configuration files or configuration directives,
refer to “Configuration Reference” on page 53 for a brief introduction before
proceeding with the following procedures.

Routing Requests from the Web Server

To route all requests from the web server to the proxy server, follow these steps.

1. Create an intranet/internet Webproxy server pair using wp_create. Execute the
web_proxy_config script by typing the following command on the
command-line.
/opt/hpws/apache/webproxy/bin/web_proxy_config

2. When prompted:

- enter the name of the internet web server.

- enter the port number at which the intranet Webproxy server will listen. The
port number must be greater than 1024. Port number 4441 is used as an
example throughout this section.

3. Restart the internet Webproxy server.

4. Restart the intranet Webproxy server.

Tips:

• The directives, Listen, ServerAdmin, ServerName, User, and
Group are located in “Section 2: Main Server Configuration” of the
/opt/hpws/apache/webproxy/servers/wp-<serverid>/conf/httpd.conf file.
Read the comments in the httpd.conf configuration file carefully and verify that
these directives are valid. Failure to set up this file correctly could cause your
server to not work properly or securely.

• The Listen directive in the proxy server configuration file ensures that the
proxy server accepts requests only from the internet Webproxy server.

Webproxy Administrator’s Guide 31

Configuring the Proxy Server
Basic Configuration

Enabling Proxying

Open the proxy server’s configuration file
/opt/hpws/apache/webproxy/servers/wp-<serverid>/conf/httpd.conf. You can
now enable proxying in one of the following two ways:

1. Uncomment and edit the statements related to the ProxyRequests directive
as follows:
<IfModule mod_proxy.c>
ProxyRequests On
<Directory proxy:*>
 Order deny,allow
Deny from all
 Allow from all
</Directory>
</IfModule>

2. Add the RewriteEngine directive.
RewriteEngine On

Tip: Statements containing proxy directives are located between
<IfModule mod_proxy.c> and the corresponding </IfModule>. To jump
to this section of the httpd.conf file, search for “mod_proxy.c”.

Note: The Directory directive usually contains directories while the
Location directive contains URLs, but the proxy is controlled using
<Directory> as a matter of legacy because <Location> was added later. A
future version of the configuration language may switch this to <Location>.

32 Chapter 4

Configuring the Proxy Server
Basic Configuration

Routing Requests to Back-End Servers

Now that the proxying capability is enabled, you can set up Webproxy to perform
its simplest task... mirroring a back-end server. To make the proxy server function
as a stand-in for the back-end server, for example, web1, use the ProxyPass
directive as follows:

ProxyPass / http://web1.domain.com/

To map files and directories on the back-end server into the space of the proxy
server, add statements similar to the following examples to your proxy server’s
configuration file.

ProxyPass /index.html http://web1.domain.com/top.html
ProxyPass /cgi-bin/ http://web1.domain.com/cgi-bin/
ProxyPass /images/ http://web1.domain.com/images/
ProxyPass /ssi/ http://web1.domain.com/ssi/
ProxyPass / http://web1.domain.com/

Note: Ensure that the order of directives is from the most-specific to the
least-specific.

To map files and directories on more than one back-end server into the space of the
proxy server, add statements similar to the following examples.

ProxyPass /app1/ http://web1.domain.com/cgi-bin/
ProxyPass /app2/ http://web2.domain.com/cgi-bin/
ProxyPass /static/ http://10.10.10.10:8080/html/

Hiding the Identity of the Back-End Server

By configuring Webproxy to conceal the identity (hostname and IP address) of the
back-end servers, you reduce their exposure to targeted Internet attacks. Webproxy
ensures that the browser’s location view displays the URL relative to the outside
web server’s name instead of the back-end server’s name.

Webproxy ordinarily hides the identity of the back-end server when the server
returns a document in response to the client’s request. For example, if web1

Webproxy Administrator’s Guide 33

Configuring the Proxy Server
Basic Configuration

responds to a client’s request by providing foo.html, the browser’s location view
displays the URL http://vault.domain.com/foo.html.

You should also configure Webproxy to hide the identity of the back-end server
when the server redirects the browser to another URL. For example, if instead of
serving foobar.html, web1 redirects the client to error.html, Webproxy can be
configured to ensure that the client’s browser is redirected to the URL
http://vault.domain.com/error.html.

To mask the identity of two back-end servers, for example web1 and web2, with
that of the outside web server, for example vault, use the ProxyPassReverse
directive as follows:

ProxyPassReverse / http://web1.domain.com:8081/
ProxyPassReverse / http://web2.domain.com:8082/

Note: Webproxy cannot hide back-end server identity when the HTML content
provided by back-end servers contains absolute pathnames instead of links relative
to the document root. For example, if web1 redirects the browser from
foo/bar.html to http://web2.domain.com:8082/bad/error.html instead of
bad/error.html, Webproxy cannot adjust the URL displayed in the client’s
browser.

Configuring a Webproxy Server Instance to Filter POST Method
Data

To configure the Webproxy to filter POST method data, the following changes
should be made to the Webproxy configuration file,
/opt/hpws/apache/webproxy/servers/wp-<serverid>/conf/httpd.conf:

1. Uncomment the following line by removing the leading #:
#RewriteEngine On

2. Uncomment the following line specify the log file name:
#RewriteLog /opt/hpws/apache/webproxy/servers/wp-<serv-
erid>/logs/<log-file-name>

3. Uncomment the following line and specify the log level

34 Chapter 4

Configuring the Proxy Server
Advanced Configuration

#RewriteLogLevel <number ranging from 0 to 9>

4. Uncomment the following line:
#RewritePOST On

5. Uncomment the following lines to filter the string specified by
"string-to-be-filtered":
#RewriteCond%{HTTP:RewritePOST} ^.*string-to-be-filtered*
#RewriteRule ^(.*)$ - [F]

6. Uncomment the following line to specify the back-end server:
#RewriteRule ^(.*)$ http://<back-end.server.com>$1 [P]

The rewrite directives used in the above 6 steps should be inserted into the SSL
VirtualHost section if the rewriting has to be enabled for an SSL enabled server.

Starting a Proxy Server Instance

To start the proxy server, execute the following command.

/opt/hpws/apache/webproxy/servers/wp-<serverid>/bin/apachectl
start

The Webproxy server instance is now operational. To begin proxying between
Internet clients and back-end application servers, it is necessary to start both the
intranet proxy server and the internet proxy server instances.

Note: If you edit the configuration while the proxy server is running, you must
restart the proxy server for the changes to take effect.

Advanced Configuration

Although Webproxy is now operational, it has many other features, such as content
filtering, support for load balancing, and server affinity that can enhance the

Webproxy Administrator’s Guide 35

Configuring the Proxy Server
Advanced Configuration

security and performance of back-end servers. Webproxy consists of several
modules, such as Rewrite Engine (mod_rewrite module) and Proxy (mod_proxy
module) that work together to provide these features.

The connections between the mod_rewrite module and the mod_proxy module can
introduce conflicts if you do not specify the directives carefully. Note that
mod_proxy directives operate on requests before mod_rewrite directives. Some
mod_rewrite directives may not work, for example, if mod_proxy directives
specify that all requests should be proxied to back-end servers.

To be safe, comment out the following statement from your proxy server
configuration file before proceeding.

ProxyPass / http://web1.domain.com/

Notes:

The “\n” characters at the end of some statements in the configuration file examples
shown in the following sections indicate that the logical line continues into the next
physical line. In the actual configuration file, do not reproduce the “\n” characters.
Instead, ensure that each logical line occupies a single physical line.

The “[P]” characters at the end of some statements in the configuration file
examples shown in the following sections indicate that the request should be
rerouted through the proxy module.

36 Chapter 4

Configuring the Proxy Server
Advanced Configuration

Routing Requests from Multiple Web Servers

You can configure more than one internet Webproxy server instance to send HTTP
requests to the same intranet Webproxy server instance. To do this, follow these
steps.

1. Create a new web server instances for internet and intranet servers. Remember,
the web_proxy_config script will assume that the internet server will listen to the
internet network interface, and the intranet server will listen to localhost at
127.0.0.1. Listen directives placed in configuration files by web_proxy_config
will utilize the IP address form of specification (i.e, Listen
xxx.xxx.xxx.xxx:<portnum>).

2. Execute the web_proxy_config script by typing the following command on the
command-line.
/opt/hpws/apache/webproxy/bin/web_proxy_config

3. When prompted:

- enter the name of the new internet proxy server instance.

- enter the port number at which the intranet proxy server will listen.
Ensure that this is the same port number that you specified earlier for the first
instance of the internet proxy server instance. Recall that there is no default
value for the port number, but it must be greater than 1024.

4. Start the new internet proxy server instance.The script updates the
/opt/hpws/apache/webproxy/servers/wp-<serverid>/conf/httpd.conf file for
the new web server accordingly.

Routing Specific Requests from the Web Server

You can configure the internet proxy server instance to send only certain HTTP
requests to an intranet proxy server instance. Requests not matching the pattern
specified are then handled by other mechanisms specified by the internet server
instance (i.e. error message or cgi).

To specify the requests you want to send to the proxy server, follow these steps.

Webproxy Administrator’s Guide 37

Configuring the Proxy Server
Advanced Configuration

1. Open a web server’s
/opt/hpws/apache/webproxy/servers/ws-<serverid>/conf/httpd.conf
configuration file.

2. Find the following configuration file proxy module section.
<IfModule mod_proxy.c>
ProxyRequests On
RewriteRule ^/(.*)$ http://127.0.0.1:<PORT_NUM>/$1 [p]

3. Edit the RewriteRule ^/(.*)$ element to restrict the range of the
requests to be proxied.
For example, ”^/mycompany(.*)$” proxies only those requests whose
URLs are of the form http://vault.domain.com/mycompany/foo.html.

4. Restart the internet web server instance.

In most cases, Webproxy is configured to proxy all requests to the back-end
servers. This special configuration may be useful unless the deployment requires
the functionality of both proxying and other typical web server functions (cgis, java
programs, local applications). For example, an application may have some CGI
programs that run on the Webproxy system, whereas other modules of the
application or its static content files are available only on back-end intranet servers.
In this deployment, you may configure the web server so that a Webproxy server
proxies to processes on the local system using following statement.

RewriteRule ^/app2(.*)$ http://127.0.0.1:<PORT_NUM_1>/$1 [P]
RewriteRule ^/html(.*)$ http://127.0.0.1:<PORT_NUM_1>/$1 [P]

Note that it is not recommended for CGIs to run on the HPUX Webproxy system,
but the Apache server shipped with Webproxy does support CGI execution. CGI
execution would take place in the chroot compartment environment, and may
require additional integration beyond what one would expect in a normal Apache
execution environment.

Denying Specific Requests from All Internet Clients

You can block access to specific back-end servers, files, or certain file types using
the ProxyBlock and ProxyBlockContent directives. To block access to a

38 Chapter 4

Configuring the Proxy Server
Advanced Configuration

resource (hostname or IP Address), add statements similar to the following
examples to your proxy server’s configuration file.

ProxyBlock beta
ProxyBlock 10.10.10.10 inside.domain.com

The first statement blocks requests containing the string “beta” in the hostname,
such as http://vault-beta.domain.com/. The second statement blocks access to the
back-end server with the specified IP address or hostname.

Tips: Although not essential, add these directives between the statement containing
<IfModule mod_proxy.c> and the statement containing </IfModule> in
order to ease maintenance.

Denying All Requests from Specific Internet Clients

You can deny requests to back-end resources from specific clients or users on the
Internet using the RewriteCond and RewriteRule directives. In addition, the
RewriteMap directive allows you to create a list of forbidden Internet hosts. This
section provides some simple examples that illustrate the configuration.

Using the RewriteCond and RewriteRule directives is adequate when the
web site is small, but for a web site with millions of users and thousands of files in
its domain, creating a long list of users or groups, and the files that they are allowed
access to, can be cumbersome and tedious.

Note: To disable the URL rewriting module, use the RewriteEngine directive
with the value off instead of commenting out all the RewriteRule directives.

Denying Access from a Host

To deny all requests from a specific host on the Internet, add the following
statements to your proxy server’s configuration file.

RewriteCond %{HTTP:PROXY-REMOTE-HOST} \n
^badhost\.clientdomain\.com$

Webproxy Administrator’s Guide 39

Configuring the Proxy Server
Advanced Configuration

RewriteRule ^/(.*)$ - [F]

The first statement examines the PROXY-REMOTE-HOST header for a match on
the specified hostname. The second statement blocks access to the request if the
match is successful.

Denying Access from a Domain

To deny all requests from any host at a specific domain, add the following
statements to your proxy server’s configuration file.

RewriteCond %{HTTP:PROXY-REMOTE-HOST} *\.baddomain\.com$
RewriteRule ^/.* - [F]

Denying Access from a Top Level Domain

To deny all requests from any domain in a specific country, add the following
statements to your proxy server’s configuration file.

RewriteCond %{HTTP:PROXY-REMOTE-HOST} *\.<TLD>$
RewriteRule ^/.* - [F]

<TLD> in the search pattern indicates the Top Level Domain for the country.

Denying Access from Multiple Hosts

To deny all requests from a list of hosts, create a map file called hosts.deny as
follows:

hosts.deny
10.10.10.10 -
badhost.baddomain.badTLD -

Note: The hosts.deny file is a map of key-value pairs, even though it is treated as a
list. Verify that each key (hostname/IP) is mapped to the dummy value “-”.

Then, add the following statements to your proxy server’s configuration file.

RewriteMap hosts-deny txt:/path/to/hosts.deny

40 Chapter 4

Configuring the Proxy Server
Advanced Configuration

RewriteCond \n
${hosts-deny:%{HTTP:PROXY-REMOTE-HOST}|NOT-FOUND} \n
!=NOT-FOUND [OR]
RewriteCond \n
${hosts-deny:%{HTTP:PROXY-REMOTE-ADDR}|NOT-FOUND} \n
!=NOT-FOUND
RewriteRule ^/.* - [F]

Denying Access from a User

To deny all requests from a specific user at a domain, add the following statements
to your proxy server’s configuration file.

RewriteCond \n
%{HTTP:REMOTE_IDENT}@%{HTTP:PROXY-REMOTE-HOST} \n
^baduser@clienthost\.clientdomain\.com$
RewriteRule ^/.* - [F]

Webproxy Administrator’s Guide 41

Configuring the Proxy Server
Advanced Configuration

Denying Specific Requests from Specific Internet Clients

Commercial web sites often generate substantial revenue by selling advertising on
their front pages, typically the most highly-visited pages of any site. Although an
unwritten code seemingly allows anyone to link to anything on the Internet, by
allowing users to bypass the front-page of a web site, “deep links” may subvert a
site’s access policy.

Denying Requests from Search Agents and Robots

Search engines, robots, web crawlers, and other agents obviously perform a useful
function, but they may, in some cases, allow users to bypass registration, violate
copyright protections, or create an uneven performance load on some parts of the
site. The standard method of blocking search engines is to use the robots.txt file
which excludes robots, but is often ineffective or overbearing. The RewriteCond
and RewriteRule directives operating on HTTP headers provide a convenient
and fine-tuned alternative to the standard robots.txt file.

To block access to certain requests from robots, add the following statements to
your proxy server’s configuration file.

RewriteCond %{HTTP:USER-AGENT} ^BadRobot.*
RewriteCond %{HTTP:PROXY-REMOTE-ADDR} \n
^123\.45\.67\.[8-9]$ [OR]
RewriteCond %{HTTP:PROXY-REMOTE-HOST} \n
^search\.domain\.com$
RewriteRule ^/foo/bar/deep/.+ - [F]

Denying Requests through Deep Links

Like search engines and robots, deep links allow a user to bypass the “front page”
of a site and may take away its value. If someone were to develop their web page
with in-lined graphics whose source is located on your web site, the link from their
page would add traffic to your site without adding any revenue.

42 Chapter 4

Configuring the Proxy Server
Advanced Configuration

In some cases of severe trespassing, corporations have pursued legal redress against
deep link providers, but Webproxy offers a simple technical solution. Using the
RewriteCond and RewriteRule directives, you can block access through
deep links whenever the browser sends out the HTTP_REFERER header.

To block access to certain requests through deep links, add the following statements
to your proxy server’s configuration file.

RewriteCond %{HTTP:REFERER} !^$
RewriteCond %{HTTP:REFERER} !^http://www\.domain\.com/.*$
RewriteRule ^/foo/bar/deep/.+ - [F]

RewriteCond %{HTTP:REFERER} !^$
RewriteCond %{HTTP:REFERER} !.*/foo-with-gif\.html$
RewriteRule ^inlined-in-foo\.gif$ - [F]

Routing Specific Requests from Specific Internet Clients

Although much of the preceding discussion focused on denying access, security is
not just about keeping people out. Good security is about letting the right people in
so they can access the resources to which they are entitled to quickly, safely, and
privately.

The mod_rewrite and the mod_proxy modules work together to provide a powerful
mechanism for routing HTTP requests to the back-end server and redirecting
requests based on HTTP headers. The following subsections illustrate only some of
the many ways in which the capabilities of these two modules can be exercised. For
additional resources, refer to “Additional Documentation” on page 9.

Routing Requests to Back-End Servers

Recall that the ProxyPass directive allows you to route incoming requests to a
back-end server in the following statements.

ProxyPass /index.html http://web1.domain.com/top.html
ProxyPass /cgi-bin/ http://web1.domain.com/cgi-bin/
ProxyPass /images/ http://web1.domain.com/images/

Webproxy Administrator’s Guide 43

Configuring the Proxy Server
Advanced Configuration

ProxyPass /ssi/ http://web1.domain.com/ssi/
ProxyPass / http://web1.domain.com/

The RewriteRule directive provides a simple alternative to the above statements
as shown in the following statements.

RewriteRule \n
^/index.html http://web1.domain.com/top.html [P]
RewriteRule ^/(.*)$ http://web1.domain.com/$1 [P]

The ProxyPass directive also allows you to route incoming requests from the
proxy server to more than one back-end server as shown in the following
statements.

ProxyPass /app1/ http://web1.domain.com/cgi-bin/
ProxyPass /app2/ http://web2.domain.com/cgi-bin/
ProxyPass /static/ http://10.10.10.10:8080/html/

To handle this using the RewriteRule directive, add the following statements to
your proxy server’s configuration file.

RewriteRule ^/app([1-9])/(.*)$ http://web$1.domain.com/cgi-bin/$2
[P]
RewriteRule ^/static(.*)$ http://10.10.10.10:8080/html$1 [P]

The first statement takes advantage of the ordered pairs (app1,web1) and
(app2,web2) to provide a generalized rule that handles both cases.

Note: The order of the RewriteRule directives is the order in which the rules are
applied at run-time. Directives should be added typically in the most-specific to the
least-specific order. But when directives are equally specific, add them in the
most-requested to the least-requested order.

Routing Requests to Client-Specific Content

Content providers often create multiple versions of the same file to account for
differences in browser display. Using Webproxy, you can provide one version of a
document to Netscape Navigator, another to Internet Explorer, and a third version
to all other browsers.

RewriteCond %{HTTP:USER-AGENT} ^Mozilla/.*
RewriteRule ^foo\.html$ foo\.NS\.html [P,L]

44 Chapter 4

Configuring the Proxy Server
Advanced Configuration

RewriteCond %{HTTP:USER-AGENT} ^MSIE/.*
RewriteRule ^foo\.html$ foo\.IE\.html [P,L]
RewriteRule ^foo\.html$ foo\.x\.html [P,L]

In the first statement, the RewriteCond directive evaluates
HTTP_USER_AGENT against the regular expression ^Mozilla/.*. If this
condition is satisfied, the RewriteRule directive rewrites foo.html to
foo.NS.html. The P (proxy) flag notifies the mod_rewrite module to forward the
request to the mod_proxy module. The L (last) flag indicates that no further rules
operate on this request.

If the request does not match the first condition, the rewrite engine checks for the
condition specified in the second RewriteCond statement. Upon a match, the
RewriteRule directive rewrites foo.html to foo.ie.html. All other browsers are
served the generic foo.x.html file.

If the browser making the request is in fact a search agent, as illustrated in
“Denying Requests from Search Agents and Robots” on page 41, you can force the
server to respond with the “front page” by adding the following statements to your
proxy server’s configuration file.

RewriteCond %{HTTP:USER-AGENT} ^BadRobot.*
RewriteCond %{HTTP:PROXY-REMOTE-ADDR} \n
^123\.45\.67\.[8-9]$ [OR]
RewriteCond %{HTTP:PROXY-REMOTE-HOST} \n
^search\.domain\.com$
RewriteRule ^/foo/bar/deep/.+ index\.html$ [P,L]

Unlike search engines and robots, deep links that bypass the “front page” of a site
cannot be identified by the client that originated the request. Yet, the browser often
sends out the HTTP_REFERER header which identifies the referring site. If the
referring site is not a part of your own web site’s domain, you can redirect the
incoming request to the “front page” of your site, effectively thwarting the deep
link.

To redirect requests through deep links to the front page, add the following
statements to your proxy server’s configuration file.

RewriteCond %{HTTP:REFERER} !^$
RewriteCond %{HTTP:REFERER} !^http://www\.domain\.com/.*$

Webproxy Administrator’s Guide 45

Configuring the Proxy Server
Advanced Configuration

RewriteRule ^/foo/bar/deep/.+ http://www1.domain.com/index.html
[P]

Redirecting All Requests from Specific Internet Clients

You can redirect requests to back-end resources from specific clients or users on the
Internet using the RewriteCond and RewriteRule directives. The
RewriteMap directive allows you to also create a list of Internet hosts that are
always redirected. This section provides some simple examples that illustrate the
configuration.

Redirecting Access from a Host

To redirect all requests from a specific host on the Internet, add the following
statements to your proxy server’s configuration file.

RewriteCond %{HTTP:PROXY-REMOTE-HOST} \n
^badhost\.clientdomain\.com$
RewriteRule ^/.*$ http://www1.domain.com/error.html [P]

The first statement examines the REMOTE_HOST header for a match on the
specified hostname. If the match is successful, the second statement rewrites the
URL to a custom error page.

Redirecting Access from a Domain

To redirect all requests from any host at a specific domain, add the following
statements to your proxy server’s configuration file.

RewriteCond %{HTTP:PROXY-REMOTE-HOST} *\.baddomain\.com$
RewriteRule ^/.*$ http://www1.domain.com/error.html [P]

46 Chapter 4

Configuring the Proxy Server
Advanced Configuration

Redirecting Access from a Top Level Domain

To redirect all requests from any domain in a specific country, add the following
statements to your proxy server’s configuration file.

RewriteCond %{HTTP:PROXY-REMOTE-HOST} *\.<TLD>$
RewriteRule ^/.*$ http://www1.domain.com/error.html [P]

<TLD> in the search pattern indicates the Top Level Domain for the country.

Redirecting Access from Multiple Hosts

To redirect all requests from a list of hosts, create a map file called hosts.deny as
follows:

hosts.redirect
10.10.10.10 -
badhost.baddomain.badTLD -

Note: The hosts.redirect file is a map of key-value pairs, even though it is treated
as a list. Verify that each key (hostname/IP) is mapped to the dummy value “-”.
Then, add the following statements to the configuration file:

RewriteMap hosts-deny txt:/path/to/hosts.redirect
RewriteCond ${hosts-redirect:%{HTTP:PROXY-REMOTE-HOST}|NOT-FOUND}
!=NOT-FOUND [OR]
RewriteCond ${hosts-redirect:%{HTTP:PROXY-REMOTE-ADDR}|NOT-FOUND}
!=NOT-FOUND
RewriteRule ^/.*$ http://www1.domain.com/error.html [P]

Redirecting Access from a User

To redirect all requests from a specific user at a domain, add the following
statements to your proxy server’s configuration file.

RewriteCond \n
%{HTTP:REMOTE-IDENT}@%{HTTP:PROXY-REMOTE-HOST} \n
^baduser@clienthost\.clientdomain\.com$
RewriteRule ^/.*$ http://www1.domain.com/error.html [P]

Webproxy Administrator’s Guide 47

Configuring the Proxy Server
Balancing Load in a Replicated Server Set

Balancing Load in a Replicated Server Set

Webproxy can forward incoming HTTP requests to a set of back-end servers, each
of which has identical static and dynamic content. Moreover, you can configure
Webproxy to balance the load among the back-end servers in the replicated server
set. Although we do not cover that configuration here, you can configure Webproxy
to remove a server when it becomes temporarily unavailable from the server set
until it comes back online.

Suppose we want to balance the traffic to www.foo.com across www[0-5].foo.com
(a total of 6 servers). This section provides instructions on how this can be done.

DNS Round-Robin

The simplest method for load balancing is to use the DNS round-robin feature of
BIND. First, configure www[0-5].foo.com in your DNS with A (address) records:

www0 IN A 1.2.3.1
www1 IN A 1.2.3.2
www2 IN A 1.2.3.3
www3 IN A 1.2.3.4
www4 IN A 1.2.3.5
www5 IN A 1.2.3.6

Then add the following statements:

www IN CNAME www0.foo.com.
 IN CNAME www1.foo.com.
 IN CNAME www2.foo.com.
 IN CNAME www3.foo.com.
 IN CNAME www4.foo.com.
 IN CNAME www5.foo.com.

When www.foo.com gets resolved, BIND gives www0 to www5, in a slightly
rotated order each time.

48 Chapter 4

Configuring the Proxy Server
Balancing Load in a Replicated Server Set

Proxy Round-Robin

Using the capabilities of the mod_rewrite module, you can configure Webproxy to
use the proxy server for load balancing by adding the following statements to the
/opt/hpws/apache/webproxy/servers/wp-<serverid>/conf/httpd.conf file.

RewriteEngine on
RewriteMap lb prg:/opt/hpws/bin/lb.pl
RewriteRule ^/(.+)$ ${lb:$1} [P,L]

This ruleset establishes a load balancing script lb.pl for all URLs.

The lb.pl script can then be written as follows:

#!/path/to/perl
##
lb.pl -- load balancing script
##

$| = 1;

$name = "www"; # the hostname base
$first = 0; # the first server
$last = 5; # the last server in the round-robin
$domain = "foo.com"; # the domainname

$cnt = 0;
while (<STDIN>) {
 $cnt = (($cnt+1) % ($last+1-$first));
 $server = sprintf("%s%d.%s", $name, $cnt+$first, $domain);
 print "http://$server/$_";
}
##EOF##

Webproxy Administrator’s Guide 49

Configuring the Proxy Server
Maintaining Server Affinity in a Replicated Server Set

Maintaining Server Affinity in a Replicated Server
Set

When Webproxy forwards incoming HTTP requests to a set of back-end servers,
each of which has identical static and dynamic content, you can configure the proxy
server so that a client maintains affinity with a particular server in the replicated
server set.

As in the previous round-robin example, consider a deployment where Internet
clients send requests to http://www.foo.com and Webproxy forwards them to one
of six servers (www[0-5].foo.com). In some cases, the back-end application may
maintain its state while processing the request, which requires the client to continue
sending requests to the same server over the course of the transaction. If the client
were to connect to another server in the replicated server set, its request would be
treated as a new connection and the transaction may be aborted.

Webproxy provides a convenient way to maintain server affinity through the use of
cookies. You can configure Webproxy to examine the HTTP request headers for a
cookie header containing the HPWP=http://www1.foo.com name-value pair. If
the cookie header does not contain this name-value pair, Webproxy writes a cookie
into the server’s response with the name “HPWP” and value of the back-end server.

If the cookie header contains the name-value pair HPWP=http://www1.foo.com, a
cookie is not written unless the back-end server explicitly sets a new cookie. If the
back-end server sets new cookies, Webproxy resets its own cookie to prevent the
original from being overwritten. You can then configure Webproxy to redirect
subsequent requests from the same client (whose request headers contain the
Webproxy cookie) to the back-end server specified in the cookie.

To maintain server affinity in a replicated server set, follow these steps.

1. Enable server affinity by adding the following statements to your proxy server’s
configuration file.

ProxyCookie On
ProxyCookieExpires 300

50 Chapter 4

Configuring the Proxy Server
Maintaining Server Affinity in a Replicated Server Set

2. Configure Webproxy to examine incoming HTTP requests for the cookie header
and redirect the request to the appropriate back-end server by adding the
following statements to your proxy server’s configuration file.

RewriteCond %{HTTP:COOKIE} HPWP=http://www0.foo.com/
RewriteRule ^/(.+)$ http://www0.foo.com/$1 [P]

RewriteCond %{HTTP:COOKIE} HPWP=http://www1.foo.com/
RewriteRule ^/(.+)$ http://www1.foo.com/$1 [P]

RewriteCond %{HTTP:COOKIE} HPWP=http://www2.foo.com/
RewriteRule ^/(.+)$ http://www2.foo.com/$1 [P]

RewriteCond %{HTTP:COOKIE} HPWP=http://www3.foo.com/
RewriteRule ^/(.+)$ http://www3.foo.com/$1 [P]

RewriteCond %{HTTP:COOKIE} HPWP=http://www4.foo.com/
RewriteRule ^/(.+)$ http://www4.foo.com/$1 [P]

RewriteCond %{HTTP:COOKIE} HPWP=http://www5.foo.com/
RewriteRule ^/(.+)$ http://www5.foo.com/$1 [P]

Notes:

• The ProxyCookie directive allows Webproxy to send cookies to the client.
To disable server affinity, set the ProxyCookie directive to off.

• The ProxyCookieExpires directive determines the duration for which the
cookie is active. The default value of ProxyCookieExpires is 5 minutes
(300 seconds) and its range is [0-999999999] seconds.

• Ensure that the system date and time are set correctly before specifying the
ProxyCookieExpires value.

• Test the ProxyCookieExpires value with the browsers commonly used by
your customers. Some browsers may not expire the cookie correctly.

• HTTPS can also be used where HTTP is shown in the above examples if you
have SSL enabled.

Webproxy Administrator’s Guide 51

Configuring the Proxy Server
Restarting the Proxy Server

Restarting the Proxy Server

For your configuration changes to take effect, you must restart the proxy server. To
restart the proxy server, execute the following commands.

/opt/hpws/apache/webproxy/servers/wp-<serverid>/bin/apachectl \
stopall
/opt/hpws/apache/webproxy/servers/wp-<serverid>/bin/apachectl \
start

To restart the proxy server with SSL, execute the following command.

/opt/hpws/apache/webproxy/servers/wp-<serverid>/bin/apachectl \
startssl

The examples in this chapter are intended to give you a hint of the power and
flexibility of Webproxy. With a little extra effort, you can build on them to
customize a solution that precisely meets your needs.

Configuring Webproxy to Run in a Chrooted
Environment

By default, each Webproxy server runs in a chrooted environment. When HP-UX
Apache-based Web Server is installed, the Webproxy component is installed with
two default roots: /var/jail/wp_internet and /var/jail/wp_intranet. Other Chroot
environments can be created with the /opt/hpws/apache/webproxy/bin/mkchroot
script:

/opt/hpws/apache/webproxy/bin/mkchroot <rootname>

When this mkchroot command executes, it creates a server environment at
/var/jail/wp_<rootname>. This root environment contains executables, libraries,
devices and a base document directory for executing an apache server. The server

52 Chapter 4

Configuring the Proxy Server
Configuring Webproxy to Run in a Chrooted Environment

executes in this environment because the HP-UX Apache-based Web Server has
been modified to utilize a Chroot directive in its configuration file,

/opt/hpws/apache/webproxy/servers/wp_<serverid>/conf/httpd.conf :

Chroot /var/jail/wp_<rootname>

This directive is placed in the httpd.conf file during server creation. The root name
is derived from the <network> parameter of the
/opt/hpws/apache/webproxy/bin/wp_create script:

/opt/hpws/apache/webproxy/bin/wp_create server1 server1 80 443
owww www internet

In the above example, /var/jail/wp_ is prepended to "internet" to form the Chroot
variable directory, /var/jail/wp_internet. Since no check is made to determine if
the chroot compartment exists, it is important to make sure that the root name is
spelled correctly, and that the root exists. Otherwise, the server will fail to start.

This base root environment is designed to proxy only. If it is desired that the server
should execute cgi programs or server custom static content, then the application
integrator will need to modify the chroot environment to make it suitable for the
desired purpose.

Chroot environments can be removed using the
/opt/hpws/apache/webproxy/bin/rmchroot command.

/opt/hpws/apache/webproxy/bin/rmchroot <rootname>

This command will remove the directory /var/jail/wp_<rootname> and all of its
contents. If rmchroot is executed without a rootname, it removes all chroot
environments (all environments that begin with /var/jail/wp_), so be careful when
executing this command. The rmchroot command is executed to delete all chroot
environments during Webproxy product removal.

Webproxy Administrator’s Guide 53

Configuration Reference
Regular Expressions

5 • Configuration Reference

This chapter provides reference material that you can use to gain a deeper
understanding of Webproxy configuration tasks. Following a brief introduction to
regular expressions, this chapter describes the proxy server configuration files and
the usage of some common configuration directives. This chapter also includes the
list of HTTP headers upon which the RewriteCond directive operates, and the list
of flags available with the RewriteRule directive.

Regular Expressions

Understanding regular expressions is a prerequisite to configuring the proxy server.
Using regular expressions, you can define patterns on which the conditions and
rules of the URL rewriting engine operate. The following table lists some
commonly used expressions.

Expression Meaning

. Matches any single character except a newline

x? Matches zero or one occurrences of regular expression x

x* Matches zero or more occurrences of regular expression x

x+ Matches one or more occurrences of regular expression x

x{n,m} Matches the character x where x occurs at least n times but no more
than m times

x{n,} Matches the character x where x occurs at least n times

x{n} Matches the character x where x occurs exactly n times

[abc] Matches any of the characters enclosed in the brackets

[^abc] Matches any character not enclosed in the brackets

54 Chapter 5

Configuration Reference
Regular Expressions

The more you know about regular expressions, the more there seems to be left to
know. We recommend that you read the regex(3) manual page or acquire the book
Mastering Regular Expressions, by Jeffrey E.F. Friedl, O'Reilly & Associates,
1997, to learn more.

[a-z] Matches any characters within the range in the brackets

x Matches the character x where x is not a special character

\x Removes the meaning of special character x

"x" Removes the meaning of special character x

xy Matches the occurrence of regular expression x followed by the
occurrence of regular expression y

x|y Matches either the regular expression x or the regular expression y

^ Matches the beginning of a string

$ Matches the end of a string

(x) Groups regular expressions

Expression Meaning

Webproxy Administrator’s Guide 55

Configuration Reference
Configuration Files

Configuration Files

Configuring the Webproxy server involves modifying various directives in the
central configuration file,
/opt/hpws/apache/webproxy/servers/wp-<serverid>/conf/httpd.conf. Most SSL
Virtualhosts and SSL configuration directives can be found and modified in
/opt/hpws/apache/webproxy/servers/wp-<serverid>/conf/ssl.conf. These two
files control most aspects of the Webproxy server’s configuration and operation.

Two configuration files are now distributed empty, because it is recommended that
all directives be kept in a single file for simplicity. These two files, included
primarily for historical purposes, are srm.conf and access.conf.

The configuration directives in the httpd.conf file are grouped into three main
sections. These sections are:

1. Directives that control the operation of the server process as a whole.

2. Directives that define the parameters of the main or default server, which
responds to requests that are not handled by a virtual host. These directives also
provide default values for the settings of all virtual hosts.

3. Settings for virtual hosts, which allow web requests to be sent to different IP
addresses or hostnames and have them handled by the same server process.

Notes:

• Unless otherwise noted, maintain all directives in the httpd.conf and ssl.conf
files. In configuring the Webproxy server, you will be modifying a few
directives (port number and server servername) in the first section, many
directives in the second section, and perhaps some in the third section. Most
SSL configuration directives should be specified in ssl.conf.

• The /opt/hpws/apache/webproxy/servers/wp-<serverid>/conf directory also
contains another file called mime.types. This file usually does not need editing.

• The httpd.conf file is processed before the srm.conf and access.conf files. If
you find it necessary to use these files, you can override the processing of these
later files using the ResourceConfig and AccessConfig directives in the
httpd.conf file. The ssl.conf file is #included from the httpd.conf file.

56 Chapter 5

Configuration Reference
Configuration Directives

• Read the comments in each file carefully. Failure to setup these files correctly
could cause your server to not work properly or securely.

Configuration Directives

This section provides a brief description of directives commonly used in
configuring Webproxy. Although this information is intended to be complete, the
following sections do not provide comprehensive documentation of the
mod_rewrite and mod_proxy modules. For more details about these and other
modules, refer to “Additional Documentation” on page 9.

mod_proxy

The mod_proxy module provides the forward proxying, reverse proxying, and
caching capabilities of the Webproxy server. This module works in conjunction
with the mod_rewrite module to forward incoming or rewritten HTTP/1.0 requests
to back-end servers. This module also adjusts the location headers of outgoing
responses to hide back-end server identity. The following directives allow you to
configure these capabilities.

ProxyRequests

Syntax: ProxyRequests <On|Off>
Default: ProxyRequests Off
Context: server config, virtual host

This directive enables or disables proxying. Setting ProxyRequests to off does not
prevent use of the ProxyPass directive.

Webproxy Administrator’s Guide 57

Configuration Reference
Configuration Directives

ProxyPass

Syntax: ProxyPass <path> <URL>
Default: None
Context: server config, virtual host

In the syntax, <path> refers to the name of a local virtual path and <URL> refers to
a partial URL for the remote server.

This directive allows remote servers to be mapped into the space of the local server
so that the local server appears to be a mirror of the remote server.

ProxyPassReverse

Syntax: ProxyPassReverse <path> <URL>
Default: None
Context: server config, virtual host

This directive enables Webproxy to adjust the URL in the location header of HTTP
redirect responses.

Notes:

• ProxyPassReverse does not depend on a corresponding ProxyPass
directive; it can be used in conjunction with the RewriteRule directive
provided by the mod_rewrite module.

• Without the ProxyPassReverse directive, HTTP redirect responses from
back-end servers would bypass the proxy server. Under such circumstances, the
client’s browser would display the identity of the back-end server, diminishing
the security offered by Webproxy.

ProxyBlock

Syntax: ProxyBlock <word host domain_list>
Default: None
Context: server config, virtual host

58 Chapter 5

Configuration Reference
Configuration Directives

This directive specifies a list of words, hosts, or domains, separated by spaces. The
Webproxy server blocks requests whose URLs match words, hosts, or domains in
the list.

mod_rewrite

The following directives are included with the mod_rewrite module.

RewriteEngine

Syntax: RewriteEngine <on|off>
Default: RewriteEngine off
Context: server config, virtual host, directory, .htaccess

This directive enables or disables URL rewriting at runtime.

Note: By default, rewrite configurations are not inherited. If you have configured
multiple virtual hosts (proxy servers), you must include a RewriteEngine on
directive for each virtual host.

RewriteLog

Syntax: RewriteLog <filename>
Default: None
Context: server config, virtual host

This directive sets the name of the file to which the server records its rewriting
actions. If the name does not begin with a slash ('/') then it is assumed to be relative
to the Server Root.

Note: This directive should occur only once in the server configuration.

Webproxy Administrator’s Guide 59

Configuration Reference
Configuration Directives

RewriteLogLevel

Syntax: RewriteLogLevel <level>
Default: RewriteLogLevel 0
Context: server config, virtual host

This directive determines the verbosity of the rewriting logs. The default level 0
means no logging, while 9 or more means that practically all actions are logged.

Notes:

• To disable the logging of rewriting actions, set <level> to 0. This disables all
rewrite action logs.

• Using a high value for Level will slow down your server dramatically. Use the
rewriting logfile at a Level greater than 2 only for debugging.

RewriteMap

Syntax: RewriteMap <MapName> <MapType:MapFile>
Default: not used per default
Context: server config, virtual host

This directive defines a map containing key-value pairs that the Webproxy server
can look up to perform URL rewriting (insertion or substitution) operations.

<MapName> specifies a mapping-function in the form of one of the following
constructs:

${ MapName : LookupKey}
${ MapName : LookupKey| DefaultValue }

When such a construct appears in a rewrite rule, the Webproxy server consults the
MapName function with the LookupKey key. If the lookup succeeds, the function
inserts or substitutes the key with the associated value. If the lookup fails, the
function inserts the default value or, if DefaultValue was not specified, the
function inserts an empty string.

60 Chapter 5

Configuration Reference
Configuration Directives

<MapType> specifies the type of map file to be used by the mapping-function.
<Mapfile> provides the path to the map file. The MapType can be one of the
following codes.

RewriteCond

Syntax: RewriteCond <TestString> <CondPattern>
Default: None
Context: server config, virtual host, directory, .htaccess

MapType Description

txt This type indicates that the mapfile is a plain ASCII file containing either
blank lines, comment lines (starting with a '#' character) or key-value pairs.

rnd This element would be identical to txt except for a special post-processing
feature. This mapfile can contain multiple values associated with a key,
where each value is separated by the '|' character which means “or”'. The
actual returned value is chosen randomly. This type of mapfile allows you
to configure load balancing among the servers named by each value.

dbm The mapfile is a binary NDBM format file containing the same contents as
a plain text file, but in a special representation optimized for fast lookups.
You can create such a file using any NDBM tool.

int The mapfile is one of the following functions internal to the server:

toupper - Converts the looked up key to all upper case

tolower - Converts the looked up key to all lower case

escape - Translates special characters in the key into hex-encodings

unescape - Translates hex-encodings in the key back to special characters

prg The mapfile is an executable program written in any language (either
object-code or a script with the path to the interpreter in its first line).

The program starts with the server and communicates with the rewrite
engine over its stdin and stdout file-handles. For each map-function
lookup, it receives the key as a string through stdin. If the match is
successful, it returns the value as a string through stdout. If the match fails
(there is no corresponding value for the given key), it returns the
four-character string “NULL”.

Webproxy Administrator’s Guide 61

Configuration Reference
Configuration Directives

This directive defines a condition, one or more, which can precede a
RewriteRule directive. The rule is enforced only if all the preceding conditions
specified by RewriteCond apply and the rule pattern specified by
RewriteRule matches the current state of the URL.

<TestString> contains either a plain text or an expanded construct that the
Webproxy server examines for a pattern match. <CondPattern> specifies the
pattern against which <TestString> is to be matched.

For a list of HTTP headers and server variables that you can use to construct an
expanded pattern, refer to “HTTP Headers” on page 63.

RewriteRule

Syntax: RewriteRule <Pattern> <Substitution>
Default: None
Context: server config, virtual host, directory, .htaccess

The RewriteRule directive is the real rewriting workhorse. This directive can
occur more than once, where each directive defines a single rewriting rule. The
order of these rules specifies the order in which the rules apply at run-time.

<Pattern> is a regular expression that is applied to the current URL, where
“current'' refers to the value of the URL when this rule is applied. The current URL
may not be the originally requested URL, because any number of rules may already
have matched and made alterations to it.

<Substitution> is the string that replaces the original URL upon a pattern
match. In addition to plain text, the substitution string may contain the following
expanded constructs.

• $N back-references to the RewriteRule pattern

• %N back-references to the last matched RewriteCond pattern

• Server-variables in rule condition test-strings (%{VARNAME})

• Map function calls (${mapname:key|default})

62 Chapter 5

Configuration Reference
Configuration Directives

Back-references, $N (N=[0-9]) and %N (N=[1-9]), identify the Nth group of the
matched pattern. Variables identify the user, the server, the client, or the connection.
Map functions are defined by the RewriteMap directive.

After the rewriting rules are applied to the pattern (in the order of definition in the
configuration file), the URL is completely replaced by the substitution.

A special substitution string ’-’ indicates no substitution and is often useful in
developing rewrite rules that forbid requests matching the pattern or, in conjunction
with the C (chain) flag, match more than one pattern before applying the
substitution.

RewriteRule Flags

The following table lists the flags that can qualify rewrite rule operations.

Flag Description

redirect | R
[=status-code]

Sends a status code between 300 and 400, specified by
status-code. The default is 302.

forbidden | F Forces the proxy server to return a status code of 403 (For-
bidden). This flag can be used to conditionally block URLs.

gone | G Forces the proxy server to return a status code of 410 (Gone)

proxy | P Forces the substitution part through the proxy module. The
substitution string must be a valid URL. This flag is useful
as a sophisticated alternative to the ProxyPass directive.

last | L Forces the rewrite process to end here

next | N Reruns the rewrite process, starting with the first instance of
RewriteRule and using the outcome of the current
rewrite process as new input.

chain | C Chains the current rule with the next rule, provided that the
current rule matches.

Webproxy Administrator’s Guide 63

Configuration Reference
Configuration Directives

HTTP Headers

The following table lists the base HTTP headers on which the RewriteCond and
RewriteRule directives can operate:

type | T [=mime-type] Forces the proxy server to return the file as the specified
MIME type.

nosubreq | NS Indicates that the current rule applies only if the current
request is not an internal subrequest.

passthrough | PT Passes the substitution to the next handler, which should
immediately follow the current RewriteRule.

skip | S [n] Skips the next n rules in a sequence if the current rule
matches.

env | E
[=VAR ABLE:VALUE]

Sets the environment variable VARIABLE to the value
VALUE.

Headers

API_VERSION REQUEST_METHOD

AUTH_TYPE REQUEST_URI

DOCUMENT_ROOT SCRIPT_FILENAME

HTTP_ACCEPT SERVER_ADMIN

HTTP_COOKIE SERVER_NAME

HTTP_FORWARDED SERVER_PORT

HTTP_HOST SERVER_PROTOCOL

HTTP_PROXY_CONNECTION SERVER_SOFTWARE

HTTP_REFERER SERVER_VERSION

HTTP_USER_AGENT THE_REQUEST

Flag Description

64 Chapter 5

Configuration Reference
Configuration Directives

Other Directives

The following directives are provided by additional modules or enhancements to
the HP-UX Apache-based Web Server that are not available in the standard ASF
Apache.

ProxyCookie

Syntax: ProxyCookie [On|Off]
Default: Off

This directive determines whether or not the Webproxy server sends a cookie to the
client. To enable sending cookies to clients, set this directive to On. The
“name=value” pair that is sent to the client consists of the name set by
ProxyCookieName and the value determined by ProxyCookieHashed
(hashed or not hashed name of the back-end server to which the client connects).

IS_SUBREQ TIME_DAY

PATH_INFO TIME_HOUR

QUERY_STRING TIME_MIN

REMOTE_ADDR TIME_MON

REMOTE_HOST TIME_SEC

REMOTE_IDENT TIME_WDAY

REMOTE_USER TIME_YEAR

REQUEST_FILENAME

Headers

Webproxy Administrator’s Guide 65

Configuration Reference
Configuration Directives

ProxyCookieName

Syntax: ProxyCookieName character-string
Default: HPWP

This directive sets the name in the “name=value” pair of the cookie.

ProxyCookieExpires

Syntax: ProxyCookieExpires <integer>
Default: 300

This directive sets the expiration time, in seconds, of the cookie sent by the proxy.
You should set its value to the maximum amount of time that you want to track or
rewrite on the cookie header. For example, if the client-server affinity should last
for 10 minutes, set the value to 600.

ProxyCookieForced

Syntax: ProxyCookieForced [On|Off]
Default: Off

When this directive is set to Off (or not set), the client is sent a cookie only if a
cookie has not been set previously (and ProxyCookie is set to On). When this
directive is set to On, a new cookie is sent to the client each and every time the
client makes a request.

ProxyCookieHashed

Syntax: ProxyCookieHashed [On|Off]
Default: Off

This directive determines whether or not the cookie contains a hashed
representation of the name of the back-end server to which the client connects.

66 Chapter 5

Configuration Reference
Configuration Directives

ProxyDowngradeRequest

Syntax: ProxyDowngradeRequest [On|Off]
Default: Off

When this directive is set to On, all requests are downgraded to HTTP/1.0. When
this directive is Off all requests pass unmodified.

Note: Webproxy 1.0 (for Virtualvault) was modified to pass 1.1 requests as 1.1, and
1.0 requests as 1.0 while setting the Connection header value to close (to prevent
persistent connections to the proxy). Unfortunately, some back-end systems looked
at the version of the request and not at the Connection header values to determine if
persistence is allowed (i.e. they were not protocol compliant). The
ProxyDowngradeRequest directive was added to restore the functionality of the
original mod_proxy to work with back-end servers that are not protocol compliant
with respect to persistence.

ProxyClientCertificate

Syntax: ProxyClientCertificate [On|Off]
Default: Off

This directive extracts the client's verified certificate and places it in the header for
propagation to a back-end server. In order for this directive to correctly propagate
the client browser certificate, the Webproxy must have SSL enabled, and must
require a client certificate (SSLVerifyClient).

ProxyVVCompatVars

Syntax: ProxyVVCompatVars [On|Off]
Default: Off

This is a Virtualvault/Webproxy compatibility directive. In Virtualvault, some
transaction information concerning the internet browser/server connection is placed
in header variables and passed to the back-end server. These variables were passed
in the earliest versions of the Virtualvault, and subsequent HTTP protocol

Webproxy Administrator’s Guide 67

Configuration Reference
Configuration Directives

specifications and servers have evolved to include most of these values in headers
of a different name.

VVAllowAbsoluteURI

Syntax: VVAllowAbsoluteURI [On|Off]
Default: Off

This directive allows or denies the default handling of absolute URIs by the
Webproxy Server. Under normal conditions, Apache parses a request of the form
"GET http://system1.com/ HTTP/1.1" and forwards it directly to system1 without
any other proxy processing. This allows clients to create URL specifications that
will connect through one more proxies to a back-end network. Because no other
filtering or processing takes place, clients may probe the back-end intranet network
by chaining absolute URIs to bypass the Webproxy system. Normally, Apache
allows absolute URI chaining.

SSLVVDowngradeLogLevel

Syntax: SSLVVDowngradeLogLevel [On|Off]
Default: Off

In some cases, Internet Explorer will abruptly shut down and renegotiate an SSL
connection causing some error messages to be written to the error log at the "error"
level. This directive allows the reclassification of these particular error messages to
be written at the "warn" level.

SSLVVProxyClientCertificate

Syntax: SSLVVProxyClientCertificate [On|Off]
Default: Off

This directive presents the proxy's client certificate to a back-end proxy or server
for authentication of the proxy. This directive is used in conjunction with the
standard "SSLProxy*" directives to allow a client proxy to authenticate to a

68 Chapter 5

Configuration Reference
Configuration Directives

back-end proxy without re-keying the private key password during the first (or
subsequent) proxied SSL request.

VVOptRenegotiate (an option to SSLOptions)

Syntax: SSLOptions +VVOptRenegotiate
Default: Off

Under unknown circumstances or conditions, Internet Explorer will abruptly drop a
negotiated SSL session and renegotiate the session. This is very CPU intensive and
may also result in new certificate warnings or passphrase requests for the client
browser. This new negotiation is often unnecessary if the previous session is
cached, and if no errors were encountered when verifying the customer certificate.

RewritePOST

Syntax: RewritePOST [On|Off]
Default: Off

This directive takes POST data (from POST HTTP requests) and places it in a
RewritePOST header. Since header variables may be manipulated by the Rewrite
module/engine, then the POST data is available for processing (filtering) by the
RewriteEngine. Since the POST data must be reinserted and resent as the body of
the request, this directive works ONLY for proxied POST requests, and will yield
undefined results when the RewritePOST directive is used with other (cgi/static
html/java) than proxy requests.

Webproxy Administrator’s Guide 69

Troubleshooting

6 • Troubleshooting

One of the more difficult aspects of configuring Webproxy is deciding on a
proxying architecture for a particular installation.Whether an application should set
up several internet Web Servers that proxy to a single intranet web server, or
whether you should set up several web servers versus a single web server with
multiple VirtualHosts, most configurations will require troubleshooting HTTP
requests and there replies. Methods in this section utilize native Apache logging,
tusc, and ssldump.

Note: tusc and ssldump are not HP products but are described here for your
reference. HP cannot provide support for any problems with building or using these
tools.

The most common Apache troubleshooting is simply the use and interpretation of
native Apache log files. Each Webproxy server instance has its own logs directory
(/opt/hpws/apache/webproxy/servers/wp-<serverid>/logs) and writes to its own
set of log files. These are Apache log files (error_log, access_log, etc.) and form the
first step in troubleshooting Webproxy connections. Server connections are
recorded in the file specified by the server's AccessLog directive. Client-server
errors, cgi errors, and general errors are recorded in the file specified by the
ErrorLog directive. SSL connections and problems are recorded in the file specified
by the SSL. Generally, Apache logging events are assigned levels that include:
debug, info, notice, warn, error, crit, alert, emerg , although the Rewrite module
logging uses levels 0 through 9. Since logging affects overall server performance,
log levels are normally set high (error or above) or turned off. For troubleshooting
purposes, however, log levels should record all events starting with the lowest
levels to gather debug and tracing information. For more information on Apache
logging, see the Apache Software Foundation webpage at www.apache.org.

If information derived from Apache log files is not sufficient to debug a particular
Apache request/reply transaction, then tusc (downloadable from one of the many
Software Porting And Archive Center mirror sites) may be used to obtain
byte-level transaction information. While tusc has many arguments and options, the
most useful features for troubleshooting Webproxy connections is the ability to see

70 Chapter 6

Troubleshooting

system connections and ASCII representations of client connections, requests,
proxy connections, and reply. A sample tusc output follows:

ps -ef |grep httpd
root 20302 1 9 08:00:59 ? 0:00
/opt/hpws/apache/bin/httpd -f /opt/hpws/apache/webproxy/serv-
ers/wp-odilbert/con www 20304 20302 1 08:00:59 ? 0:00
/opt/hpws/apache/bin/httpd -f /opt/hpws/apache/webproxy/serv-
ers/wp-odilbert/con
www 20305 20302 1 08:01:00 ? 0:00 /opt/hpws/apache/bin/httpd
-f /opt/hpws/apache/webproxy/servers/wp-odilbert/con
root 20307 2606 2 08:01:04 ttyp0 0:00 grep httpd
www 20303 20302 2 08:00:59 ? 0:00 /opt/hpws/apache/bin/httpd
-f /opt/hpws/apache/webproxy/servers/wp-odilbert/con

#tusc -r all -w all 20303 20304 20305
(Attached to process 20303 ("/opt/hpws/apache/bin/httpd -f
/opt/hpws/apache/webproxy/servers/wp-
odilbert/con") [32-bit])
accept(11, 0x7f7e0938, 0x7f7e0a3c)
[sleeping]
(Attached to process 20304 ("/opt/hpws/apache/bin/httpd -f
/opt/hpws/apache/webproxy/servers/wp-
odilbert/con") [32-bit])
read(5, 0x7f7e0a38, 1) ..
[sleeping]
ksleep(PTH_CONDVAR_OBJECT, 0x4007da00, 0x4007da08, NULL)
[sleeping]
accept(3, 0x400ea37c, 0x400ea38c)
[sleeping]
(Attached to process 20305 ("/opt/hpws/apache/bin/httpd -f
/opt/hpws/apache/webproxy/servers/wp-
odilbert/con") [32-bit])
read(5, 0x7f7e0a38, 1) ..
[sleeping]
ksleep(PTH_CONDVAR_OBJECT, 0x4007da00, 0x4007da08, NULL)
[sleeping]
semop(213, 0x7b009e08, 1) ...
[sleeping]
accept(3, 0x400ea37c, 0x400ea38c) =
4
semop(213, 0x7b009e08, 1) ... =
0

Webproxy Administrator’s Guide 71

Troubleshooting

semop(213, 0x7b009e0e, 1) ... =
0
ksleep(PTH_CONDVAR_OBJECT, 0x4007da00, 0x4007da08, NULL) =
0
kwakeup(PTH_CONDVAR_OBJECT, 0x4007da00, WAKEUP_ONE, 0x7ac262c8) ... =
0
ksleep(PTH_MUTEX_OBJECT, 0x4007d984, 0x4007d98c, NULL) =
0
sched_yield() ... =
0
kwakeup(PTH_MUTEX_OBJECT, 0x4007d984, WAKEUP_ONE, 0x7ac262cc) =
0
ksleep(RELATIVE_TIMEOUT_VALUE|PTH_SPINLOCK_OBJECT, 0x4007d98c, NULL,
0x7ae57300)
= 0
getsockname(4, 0x400ea344, 0x400ea354) =
0
fcntl(4, F_GETFL, 0) .. =
2
fcntl(4, F_SETFL, 65538) .. =
0
read(4, 0x401b00b8, 8000) ... =
1117
 G E T / H T T P / 1 . 0 \r\nC o n n e c t i o n : K e e p
 - A l i v e \r\nU s e r - A g e n t : M o z i l l a / 4 . 7
 [e n] (W i n N T ; I) \r\nH o s t : d i l b e r t . i
 d e v . a t l . h p . c o m : 8 0 8 0 \r\nA c c e p t : i m a
 g e / g i f , i m a g e / x - x b i t m a p , i m a g e / j
 p e g , i m a g e / p j p e g , i m a g e / p n g , * / *
 \r\nA c c e p t - E n c o d i n g : g z i p \r\nA c c e p t -
 L a n g u a g e : e n \r\nA c c e p t - C h a r s e t : i s
 o - 8 8 5 9 - 1 , * , u t f - 8 \r\n\r\n
gettimeofday(0x7ae57448, NULL) =
0
stat("/opt/hpws/apache/htdocs/", 0x7ae575c8) =
0
stat("/opt/hpws/apache/htdocs/index.html", 0x7ae57788) =
0
open("/opt/hpws/apache/htdocs/index.html", O_RDONLY, 0) =
11
read(4, 0x401b00b8, 8000) ...
ERR#11 EAGAIN
sendfile(4, 11, 0, 1456, 0x7ae576c8, 0) =
1790

72 Chapter 6

Troubleshooting

close(11) ... =
0
write(8, 0x400f0998, 73) .. =
73
 1 5 . 4 7 . 2 2 4 . 2 0 4 - - [1 1 / S e p / 2 0 0 3 : 0
 8 : 1 0 : 2 9 - 0 6 0 0] " G E T / H T T P / 1 . 0 "
 2 0 0 1 4 5 6 \n
write(9, 0x400f0a08, 17) .. =
17
 - - > / i n d e x . h t m l \n
write(10, 0x400f0a30, 28) ... =
28
 M o z i l l a / 4 . 7 [e n] (W i n N T ; I) \n
kwakeup(PTH_SPINLOCK_OBJECT, 0x4007d98c, WAKEUP_ALL, NULL) =
0
read(5, 0x7f7e0a38, 1) ..
[sleeping]
ksleep(PTH_CONDVAR_OBJECT, 0x4007da00, 0x4007da08, NULL)
[sleeping]
semop(213, 0x7b009e08, 1) ...
[sleeping]

In the above example, you can see the determination of which servers to connect to
(note that the server with PPID 1 is the "lead" server, and the spawned servers
actually handle the request), the "GET / HTTP/1.0" request, the sendfile to sent
the response back to the server, and the follow-up write to the various logs.

Finally, debugging ssl transactions can be quite difficult because the transactions
are encrypted. In order to debug the transaction, it is necessary to utilize an
"ssl-aware" tool that will display the transaction in clear text. For this, we
recommend ssldump. ssldump is much like tcpdump, except that it accepts a
private key password and utilizes the private key to decrypt transaction information
and display them for the application integrator. Unfortunately, ssldump is not part
of the software porting archive, so it will need to be compiled for use in debugging
HP-UX ssl connections.

ssldump utilizes the private key of the server to decode an SSL session and display
the session in clear text. The following session shows an actual (but edited) session
for an Internet Explorer client contacting a Webproxy server
(dilbert.wp.domain.com) through an intermediate internet proxy

Webproxy Administrator’s Guide 73

Troubleshooting

(proxyfromclient.domain.com). In this example, proxyfromclient has been
configured (under Internet Explorer's Tools->Internet Options-> Connections ->
LAN Settings -> Proxy server) to be a proxy to the client browser. This forces the
proxyfromclient.domain.com system to utilize the AllowCONNECT method to
create an SSL tunnel between the client browser and Webproxy.

In the following example, one can see the client and server negotiating the SSL
connection: Agreeing on cipher, validating certificates, generating a session key,
and completing the HTTP request and reply, all in a clear text readable format.

The session was created by executing the command:

#ssldump -Ad -k odilbert_pkey_080803.pem host dilbert.wp.domain.com

ssldump, in turn, prompts the user for the private key password for the encrypted
key odilbert_pkey_080803.pem.

************************ ssldump sample session start

New TCP connection #1: proxyfromclient.domain.com(19007) <-> dil-
bert.wp.domain.com(8443)
1 1 0.0355 (0.0355) C>S SSLv2 compatible client hello
 Version 3.1
 cipher suites
 TLS_RSA_WITH_RC4_128_MD5
 TLS_RSA_WITH_RC4_128_SHA
 TLS_RSA_WITH_3DES_EDE_CBC_SHA
 SSL2_CK_RC4
 SSL2_CK_3DES
 SSL2_CK_RC2
 TLS_RSA_WITH_DES_CBC_SHA
 SSL2_CK_DES
 TLS_RSA_EXPORT1024_WITH_RC4_56_SHA
 TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA
 TLS_RSA_EXPORT_WITH_RC4_40_MD5
 TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5
 SSL2_CK_RC4_EXPORT40
 SSL2_CK_RC2_EXPORT40
 TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
 TLS_DHE_DSS_WITH_DES_CBC_SHA
 TLS_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA

74 Chapter 6

Troubleshooting

1 2 0.0390 (0.0035) S>CV3.1(74) Handshake
 ServerHello
 Version 3.1
 random[32]=
 40 3f 97 58 6b 63 82 a7 f1 78 00 5f 8b 3b d3 ba
 5c 44 b1 05 b5 31 f9 a4 35 ae 56 1f 82 5e 76 b0
 session_id[32]=
 92 67 0c 1f 4f 94 18 3e f0 aa 0c 90 c3 a3 3a 6b
 36 01 c3 5f 90 f2 4d c4 a2 5d 4d 9c 35 b0 d2 86
 cipherSuite TLS_RSA_WITH_RC4_128_MD5
 compressionMethod NULL
1 3 0.0390 (0.0000) S>CV3.1(1315) Handshake
 Certificate
1 4 0.0390 (0.0000) S>CV3.1(4) Handshake
 ServerHelloDone
1 5 0.0477 (0.0086) C>SV3.1(134) Handshake
 ClientKeyExchange
 EncryptedPreMasterSecret[128]=
 02 c8 74 b6 89 74 2a 45 bf d5 81 7f 44 e1 7b 45
 e9 22 57 d3 fa 10 4d a7 a9 59 a9 cf 66 56 91 c5
 37 b3 a1 4c 31 64 7b bf 29 f4 b2 ad d3 2d 97 e4
 d3 ca a8 0d 23 1a a5 cf a7 b9 98 4d d4 21 a2 d2
 dc a4 a5 01 fb e3 bf c1 a7 80 3a d0 05 2d 33 5d
 e7 91 68 fc bb 62 3b c7 92 5c 18 50 ef 43 62 dd
 db 25 27 cf 31 13 1b 05 db bd bf 8c b2 57 ff f7
 f3 b6 08 69 f3 d3 26 03 4f b8 b7 36 3f f5 45 48
1 6 0.0477 (0.0000) C>SV3.1(1) ChangeCipherSpec
1 7 0.0477 (0.0000) C>SV3.1(32) Handshake
 Finished
 verify_data[12]=
 72 f9 05 83 9c 8c 9b e3 bb 7e 08 d9

1 8 0.2549 (0.2071) S>CV3.1(1) ChangeCipherSpec
1 9 0.2549 (0.0000) S>CV3.1(32) Handshake
 Finished
 verify_data[12]=
 d1 e4 ac e5 d0 a2 4c 7d 68 dc 16 ba

1 0.4353 (0.1804) C>S TCP FIN
1 0.4361 (0.0008) S>C TCP FIN
New TCP connection #2: proxyfromclient.domain.com(19550) <-> dil-
bert.wp.domain.com(8443)
2 1 0.0408 (0.0408) C>SV3.1(97) Handshake
 ClientHello
 Version 3.1

Webproxy Administrator’s Guide 75

Troubleshooting

 random[32]=
 40 3f 99 6e 0b d0 e0 ce 2a ce 13 55 e0 bc a5 49
 6d 10 67 1e 66 48 49 b6 ba 4f 34 4b b9 e6 0e 8c
 resume [32]=
 92 67 0c 1f 4f 94 18 3e f0 aa 0c 90 c3 a3 3a 6b
 36 01 c3 5f 90 f2 4d c4 a2 5d 4d 9c 35 b0 d2 86
 cipher suites
 TLS_RSA_WITH_RC4_128_MD5
 TLS_RSA_WITH_RC4_128_SHA
 TLS_RSA_WITH_3DES_EDE_CBC_SHA
 TLS_RSA_WITH_DES_CBC_SHA
 TLS_RSA_EXPORT1024_WITH_RC4_56_SHA
 TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA
 TLS_RSA_EXPORT_WITH_RC4_40_MD5
 TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5
 TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
 TLS_DHE_DSS_WITH_DES_CBC_SHA
 TLS_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA
 compression methods
 NULL
2 2 0.0419 (0.0011) S>CV3.1(74) Handshake
 ServerHello
 Version 3.1
 random[32]=
 40 3f 97 5a 3d b4 e2 bb 03 ad 19 4c 44 8d 0a 7d
 51 51 34 94 8e 94 cf 87 08 b7 b2 cf f1 93 bd 95
 session_id[32]=
 92 67 0c 1f 4f 94 18 3e f0 aa 0c 90 c3 a3 3a 6b
 36 01 c3 5f 90 f2 4d c4 a2 5d 4d 9c 35 b0 d2 86
 cipherSuite TLS_RSA_WITH_RC4_128_MD5
 compressionMethod NULL
2 3 0.0419 (0.0000) S>CV3.1(1) ChangeCipherSpec
2 4 0.0419 (0.0000) S>CV3.1(32) Handshake
 Finished
 verify_data[12]=
 aa 51 5f aa bb 28 4f 60 9a 19 b2 29

2 5 0.0441 (0.0021) C>SV3.1(1) ChangeCipherSpec
2 6 0.0441 (0.0000) C>SV3.1(32) Handshake
 Finished
 verify_data[12]=
 c4 40 41 04 be 42 c8 aa 57 58 e3 73

2 7 0.0447 (0.0005) C>SV3.1(1380) application_data

76 Chapter 6

Troubleshooting

 GET / HTTP/1.0
 Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/vnd.ms-powerpoint, application/vnd.ms-excel, applica-
tion/msword, application/x-shockwave-flash, */*
 Accept-Language: en-us
 User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0;
.NET CLR 1.0.3705; .NET CLR 1.1.4322)
 Host: dilbert.wp.domain.com:8443
 Connection: Keep-Alive

2 8 0.0458 (0.0011) S>CV3.1(524) application_data

 HTTP/1.0 200 OK
 Date: Fri, 27 Feb 2004 19:15:38 GMT
 Server: Apache/2.0.48 HP-UX_Apache-based_Web_Server (Unix) DAV/2
mod_ssl/2.0.48 OpenSSL/0.9.7c
 Content-Location: index.html.en
 Vary: negotiate,accept-language,accept-charset
 TCN: choice
 Last-Modified: Fri, 16 Jan 2004 22:19:06 GMT
 ETag: "6db1-5b0-fdfc0a80;6dde-961-fdfc0a80"
 Accept-Ranges: bytes
 Content-Length: 1456
 Connection: close
 Content-Type: text/html; charset=ISO-8859-1
 Content-Language: en
 Expires: Fri, 27 Feb 2004 19:15:38 GMT

2 9 0.0464 (0.0006) S>CV3.1(1472) application_data

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Test Page for Apache Installation</title>
 </head>
 <!-- Background white, links blue (unvisited), navy (visited), red
 (active) -->
 <body bgcolor="#FFFFFF" text="#000000" link="#0000FF"
 vlink="#000080" alink="#FF0000">
 <p>If you can see this, it means that the installation of the Apache web
 server software on this system was successful. You may now add

Webproxy Administrator’s Guide 77

Troubleshooting

 content to this directory and replace this page.</p>

 <hr width="50%" size="8" />
 <h2 align="center">Seeing this instead of the website you
 expected?</h2>

 <p>This page is here because the site administrator has changed
the
 configuration of this web server. Please contact the per-
son
 responsible for maintaining this server with questions.
 The Apache Software Foundation, which wrote the web server soft-
ware
 this site administrator is using, has nothing to do with
 maintaining this site and cannot help resolve configuration
 issues.</p>

 <hr width="50%" size="8" />
 <p>The Apache documentation has been
included
 with this distribution.</p>

 <p>You are free to use the image below on an Apache-powered web
 server. Thanks for using Apache!</p>

 <div align="center"></div>
 </body>
 </html>

2 0.0743 (0.0278) S>C TCP FIN
2 0.0746 (0.0002) C>S TCP FIN
************************ ssldump sample session end

78 Chapter 6

Troubleshooting

Webproxy Administrator’s Guide 79

I n d e x

A
access

deny 38
redirect from domain 45
redirect from host 45
redirect from multiple hosts 46
redirect from top level domain 46
redirect from user 46

additional resources 9
apachectl 24, 34, 51
authentication

user 4

B
balance load 47

C
caching 25
ciphers 23
configuration

advanced 34
edit 34

configuration directives 56
configuration file 7, 30, 36, 55
containment 6
content filtering 4
cookies 49

D
deep links

deny 41
deny access from domain 39
deny access from host 38
deny access from multiple hosts 39
deny access from top level domain 39
deny access from user 40
directive

Directory 31
ProxyBlock 37, 57
ProxyBlockContent 37
ProxyCookie 49, 64
ProxyCookieExpires 50, 65

ProxyCookieForced 65
ProxyCookieHashed 65
ProxyCookieName 65
ProxyPass 32, 42, 43, 57
ProxyPassReverse 33, 57
ProxyRequests 31, 56
RewriteCond 38, 41, 60
RewriteEngine 31, 38, 58
RewriteLog 58
RewriteLogLevel 59
RewriteMap 38, 59
RewriteRule 38, 43, 61
SSLEngine 23

DNS round-robin 47

E
enable

encryption 26
enable proxy 31
encryption 15

step-up 24

F
forward proxy 2

H
hardware requirements 11
hosts.deny file 39, 46
hosts.redirect file 46
HTTP 63
HTTP headers 41, 63
HTTP request 15
HTTP requests

block access 42
client-specific content 43
deny agents and robots 41
deny all 38
deny specific 37, 41
from multiple servers 36
redirect all 45
route specific 36
route to back-end 32

Webproxy Administrator’s Guide 80

I n d e x

routing 42
HTTP_REFERER header 42
httpd.conf 23, 30, 31, 55
HTTPS 23

I
install server certificate 21

L
load balancing 5
load-balancing 47
logging 6

M
maintain certificates and key pair 25
MapName function 59
mod_proxy 35, 42, 56
mod_rewrite 35, 42, 44, 58

P
portal support 5
privacy 6
proxy

basic configuration 29
enable 31
forward 2
install 13
reverse 3, 5
troubleshooting 69

proxy round-robin 48
proxy server 1, 7

configuring 29
restart 24, 51
start 34

R
regular expressions 53
replicated server set 47
replicated server-set 49
restart server 24
reverse proxy 3
rewrite engine 35
RewriteRule directive 41

flags 62
robots.txt file 41

S
search agents

deny 41
server affinity 49
server certificate

install 21
server identity

hiding 32
set encryption preferences 23
software requirements 12
SSL 24

T
trusted IPC channel 7

U
upgrade 13

W
web server

documentation 9
routing requests 30

Webproxy Administrator’s Guide 81

I n d e x

82

I n d e x

	administrator’s guide
	1 • Webproxy Overview
	What is a Webproxy?
	Forward Proxy
	Reverse Proxy

	Webproxy Features
	Reasons for Deploying Webproxy
	How Webproxy Works
	HP-UX Security Overview
	Documentation
	Web Server Documentation
	Additional Documentation

	Technical Support
	Security Updates

	2 • Installing Webproxy
	Hardware Requirements
	Software Requirements
	Installing Webproxy
	Overview of Installed Files

	3 • Securing Internet Connections
	Web Server Creation and Removal in Webproxy
	Enabling Encryption on the Webproxy Server
	Webproxy Server Certificates
	Generating Keys and Server Certificate
	Installing a Server Certificate

	Enabling Encryption
	Setting Encryption Preferences
	Restarting the Webproxy Server
	SHM SSL Session Caching Support
	Configuring Webproxy to Authenticate to back-end Servers
	Maintaining Webproxy Server Certificate and Key Pair Files
	Adding or Restoring a Key Pair Password
	Removing a Key Pair Password
	Backing Up Server Certificate and Key Pair Files

	4 • Configuring the Proxy Server
	Basic Configuration
	Routing Requests from the Web Server
	Enabling Proxying
	Routing Requests to Back-End Servers
	Hiding the Identity of the Back-End Server
	Configuring a Webproxy Server Instance to Filter POST Method Data
	Starting a Proxy Server Instance

	Advanced Configuration
	Routing Requests from Multiple Web Servers
	Routing Specific Requests from the Web Server
	Denying Specific Requests from All Internet Clients
	Denying All Requests from Specific Internet Clients
	Denying Access from a Host
	Denying Access from a Domain
	Denying Access from a Top Level Domain
	Denying Access from Multiple Hosts
	Denying Access from a User

	Denying Specific Requests from Specific Internet Clients
	Denying Requests from Search Agents and Robots
	Denying Requests through Deep Links

	Routing Specific Requests from Specific Internet Clients
	Routing Requests to Back-End Servers
	Routing Requests to Client-Specific Content

	Redirecting All Requests from Specific Internet Clients
	Redirecting Access from a Host
	Redirecting Access from a Domain
	Redirecting Access from a Top Level Domain
	Redirecting Access from Multiple Hosts
	Redirecting Access from a User

	Balancing Load in a Replicated Server Set
	DNS Round-Robin
	Proxy Round-Robin

	Maintaining Server Affinity in a Replicated Server Set
	Restarting the Proxy Server
	Configuring Webproxy to Run in a Chrooted Environment

	5 • Configuration Reference
	Regular Expressions
	Configuration Files
	Configuration Directives
	mod_proxy
	ProxyRequests
	ProxyPass
	ProxyPassReverse
	ProxyBlock

	mod_rewrite
	RewriteEngine
	RewriteLog
	RewriteLogLevel
	RewriteMap
	RewriteCond
	RewriteRule
	RewriteRule Flags
	HTTP Headers

	Other Directives
	ProxyCookie
	ProxyCookieName
	ProxyCookieExpires
	ProxyCookieForced
	ProxyCookieHashed
	ProxyDowngradeRequest
	ProxyClientCertificate
	ProxyVVCompatVars
	VVAllowAbsoluteURI
	SSLVVDowngradeLogLevel
	SSLVVProxyClientCertificate
	VVOptRenegotiate (an option to SSLOptions)
	RewritePOST

	6 • Troubleshooting
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	P
	R
	S
	T
	U
	W

